
Abstract In this study, decision tree models

were induced to predict the habitat suitability of

six macroinvertebrate taxa: Asellidae, Baetidae,

Caenidae, Gammaridae, Gomphidae and Hep-

tageniidae. The modelling techniques were app-

lied on a dataset of 102 samples collected in 31

sites along the river Axios in Northern Greece.

The database consisted of eight physical-chemical

and seven structural variables, as well as the

abundances of 90 macroinvertebrate taxa. A sea-

sonal variable was included allowing the descrip-

tion of potential temporal changes in the

macroinvertebrate taxa. Rules relating the pres-

ence/absence of six benthic macroinvertebrate

taxa with the 15 physical-chemical and structural

river characteristics and the seasonal variable

were induced using the J48 algorithm. In order

to improve the performance and the interpret-

ability of the induced models, three optimisation

techniques were applied: tree-pruning, bagging

and boosting. The predictive performance of the

decision tree models was assessed on the basis of

the percentage of Correctly Classified Instances

(CCI) and the Cohen’s kappa statistic. The results

of the present study demonstrated that although

the models had a relatively high predictive per-

formance, noise in the dataset and inappropriate

input variables prevented to some extent, the

models from making reliable predictions. Al-

though tree-pruning did not improve significantly

the reliability of the induced models, it reduced

considerably the tree complexity and in this way

increased the transparency of the trees. Conse-

quently, the induced models allowed for a correct

ecological interpretation. The effect of bagging

and boosting on the other hand varied consider-

ably between the different models, as well as

within different repetitions of 10-fold cross-vali-

dation in an individual model. In some cases the

predictive performance was improved, in others

stable or even worsened. The effect of bagging and

boosting seemed to be strongly dependent on the

dataset on which the two techniques were applied.

Tree-pruning thus proved to have a high potential

when applied in models used for decision-making

of river restoration and conservation manage-

ment.
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Introduction

Due to point source pollution of untreated urban

and industrial wastewater and diffuse pollution

originating from agricultural activities, the eco-

logical quality of water bodies in Greece has

gradually been decreasing during the last decades.

Measures to halt this degradation and restore the

waters thus become more and more a necessity.

Knowledge about the relationship between the

environmental factors and the occurrence of

freshwater organisms is a key issue in conserva-

tion management and river restoration. Assess-

ment of sites that could support important taxa,

or prediction of the responses of target species on

changes of land use or river structure are a few

examples for which the insight in the species–

environment relationship is needed. In this con-

text, modelling is becoming an essential tool to

support decision-making in water management.

Modelling of river ecosystems for instance has

made substantial progress during recent years.

Nevertheless, the non-linear and complex nature

of ecosystems makes this understanding still dif-

ficult and only a gradual progress in adequate

ecosystem modelling and computation has been

obtained (Recknagel 2002). The availability of

proper datasets and modelling techniques, how-

ever, now seems to allow for the development of

ecosystem models with a high reliability. Re-

cently, new concepts are being more commonly

used to analyse ecosystem databases and to make

predictions for river management purposes.

Artificial neural networks (Lek and Guegan

1999), fuzzy logic (Barros et al. 2000), decision

trees (Quinlan 1986) and Bayesian belief net-

works (Adriaenssens et al. 2004) for instance

have proven to have a high potential in habitat

suitability modelling, as they combine reliable

predictions with a convenient interpretation of

the predictive results (Goethals and De Pauw

2001; Goethals 2005).

One well-studied data soft-computing method,

induction of classification and regression trees

(often referred to as decision trees when dis-

cussing both methods) has been shown to be

useful in modelling complex datasets (Breiman

et al. 1984). In contrast to ANNs, the application

of classification and regression trees in ecological

modelling, in particular related to macroinverte-

brates, is rather limited and hardly described in

literature (Goethals 2005). In the following par-

agraph, an overview of the major examples is

presented.

Kompare et al. (1994) described some general

possibilities of machine learning in the field of

ecology. Dzeroski et al. (1997) were among the

first to describe applications of classification trees

in river community analysis. These include the

biological classification of British rivers based on

bioindicator data, the analysis of the influence of

physical and chemical parameters on selected

bioindicator organisms in Slovenian rivers and the

biological classification of Slovenian rivers based

on physical and chemical parameters as well as

bioindicator data. In all three cases, valuable

models (knowledge) in the form of rules were

extracted from data acquired through environ-

mental monitoring and/or expert interpretation of

the acquired samples. The applied algorithm was

CN2 (Clark and Niblett 1989). H. Blockeel et al.

(1999a unpublished) applied TILDE to predict an

ecological index (Saprobic Index) for Slovenian

rivers. The input variables were biological data,

physical-chemical characteristics (actual and

time-series) as well as combinations. Addition-

ally, also macroinvertebrate communities were

successfully predicted on the basis of physical-

chemical variables. In H. Blockeel et al. (1999b

unpublished), physical-chemical variables were

predicted on the basis of biological communities.

Innovative in this article is the use of a single tree

to predict all these variables at once, what eases

the use of this relative simple information in river

management. In Dzeroski et al. (2000), the pre-

diction of physical-chemical variables was estab-

lished on the basis of biological data. The

research revealed that certain taxa occurred in

many trees, what makes them useful to be se-

lected as indicator taxa. The research proved as

well that when compared to linear regression, the

model seemed to give the same performance.

Dzeroski and Drumm (2003) applied regression

trees (M5¢) programme (a Java implementation

of the M5 algorithm in WEKA (Witten and Frank

2000)), to predict sea cucumbers (Holothuria

leucospilota) in lagoons around the Cook Islands.

Based on these trees they were able to retrieve
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the preferred habitat of this species and found out

that the dominant variables are rubble and sand.

The aim of this paper is to demonstrate the

potential and limitations of decision trees as a

habitat suitability model for macroinvertebrates

in the river Axios in Northern Greece. Three

optimisation techniques for improving the accuracy

and transparency of the models, namely tree-

pruning, bagging and boosting, have been exam-

ined for their potential use in river management.

Materials and methods

Study area

The river Axios originates in the Sar Mountains

of the Former Yugoslavian Republic of Mace-

donia (FYROM) (Fig. 1). It discharges into the

Thermaikos Gulf in northern Greece. Only the

last 80 km of the 320-km long river are within

Greek territory. At 49 km from the border with

FYROM an irrigation dam (Fragma Ellis) has

been constructed, which remains closed from May

to September. Due to this fact, discharge falls to

1 m3/s during the dry season (Argiropoulos 1991).

Agriculture is the dominant land use activity

within the watershed and is, as a consequence, the

main source of pollution. Next to this diffuse

pollution, urban and industrial wastes are being

discharged in several places along the river

(Fig. 1).

Measurements and database set-up

The database consisted of measurements of 102

samples originating from the Axios River, col-

lected in 31 sites located in the Greek part be-

tween 1997 and 2001. In some sites, the

measurements were conducted several times a

year (between 2 and 12 measurements) to be able

to detect seasonal changes in the macroinverte-

brate communities, while other sites were sam-

pled only once between 1997 and 2001. Nineteen

environmental variables were measured during

the monitoring campaigns. Further information

on the selection of the sampling sites and the

sampling methodologies is given by Langrick

et al. (1998), Kampa et al. (2000) and Chatzi-

nikolaou (2001, 2002). Of those 19 variables, 15

were used as inputs to predict the habitat suit-

ability of the macroinvertebrate taxa (Table 1).

The applied input variables included information

on the physical-chemical as well as the structural

characteristics of the river. Also a variable was

introduced to account for the seasonal variation

in the dataset.

The samples of benthic macroinvertebrates

were taken by means of the 3-min kick-sweep

method (Armitage et al. 1983), using a standard

pond net (surface 575 cm2, mesh size 900 lm,

depth 27.5 cm). Identification of the macroinver-

tebrates was carried out to family level, in

accordance with the Greek Biotic Index (V.

Artemiadou and M. Lazaridou-Dimitriadou sub-

mitted). In total, 90 taxa were found of which 6

were selected for modelling their habitat suit-

ability. The selection of the macroinvertebrate

taxa was based on their frequency of occurrence,

as well as on their sensitivity to pollution. The

sensitivity to pollution according to the Greek

Biotic Index (100 = high sensitivity, 10 = high

tolerance to pollution) (V. Artemiadou and

M. Lazaridou-Dimitriadou submitted) of the 6

selected taxa is presented in Table 2. In the mod-

els, the absence or presence of macroinvertebrate

taxa was represented respectively by 0 or 1.

Rule induction with the J48 algorithm

The common way to induce rules in the form of

decision trees is the so-called ‘‘Top-Down
Fig. 1 The location of the Axios river in FYROM and
Greece
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Induction of Decision Trees’’ (Quinlan 1986).

Tree construction proceeds recursively, starting

with the entire set of training examples. For

each step, the most informative input variable is

selected as the root of the sub-tree and the

current training set is split into subsets accord-

ing to the values of the selected input variable.

In this manner, rules are generated that relate

the values of input variables with the presence/

absence of macroinvertebrate taxa. For discrete

input variables, a branch of a tree is typically

created for each possible value of that particular

variable. For continuous input variables, a

threshold is selected and two branches are cre-

ated based on that threshold. Tree construction

stops when all examples in a node are of the

same class (or if some other stopping criterion

is satisfied). Such nodes are called leaves and

are labelled with the corresponding values of

the class.

The C4.5 algorithm (Quinlan 1993) is one of

the most well-known and widely used decision

tree induction method. The J48 algorithm is a

Java re-implementation of C4.5 and is a part of

the machine-learning package WEKA (Witten

and Frank 2000). In the following experiments,

the J48 algorithm with binary splits was used for

the induction of classification trees. Binary split is

a parameter of the J48 algorithm that decides

whether a node can only split into two branches

or more.

The input variables of the models consisted of

physical-chemical and structural measurements,

some of which were continuous and others discrete,

while the output variables were macroinvertebrate

taxa, which were discrete (presence or absence).

Table 1 Input variables
used for the prediction of
the habitat suitability of
six macroinvertebrate
taxa in the Axios River in
Northern Greece and
their respective minimum
and maximum values

Variables Minimum
value

Maximum
value

Units

pH 7.0 9.7 –
Dissolved Oxygen Saturation (%DO) 5.0 174.8 % sat
Dissolved Oxygen (DO) 0.1 17.4 mg/l
Biological Oxygen Demand (BOD5) – 1.1 15.4 mg/l
Temperature 4.0 30.2 �C
Conductivity 178 4,860 lS/cm
Total Dissolved Solids (TDS) 80 2,430 mg/l
Total Suspended Solids (TSS) 0 194 mg/l
Flow velocity 0.0 5.9 m/s
Granulometric classification of substrate

Boulders 0 85
Cobbles 0 90
Pebbles 0 50
Gravel 0 65
Sand 0 95
Silt 0 100 %

Season 4 classes (Winter,
Spring, Summer,
Autumn)

Table 2 Selected
macroinvertebrate
families used for the
modelling approach and
their respective sensitivity
to pollution according to
the Greek Biotic Index
(V. Artimiadou and M.
Lazaridou-Dimitriadou
submitted)

Taxon Frequency of
occurrence (%)

Sensitivity to
pollution

Asellidae (Crustacea, Isopoda) 34 30
Baetidae (Insecta, Ephemeroptera) 69 40
Caenidae (Insecta, Ephemeroptera) 61 50
Gammaridae (Crustacea, Amphypoda) 41 50
Gomphidae (Insecta, Odonata) 54 60
Heptageniidae (Insecta, Ephemeroptera) 9 80

402 Aquat Ecol (2007) 41:399–411

123



Optimisation techniques

In order to reduce the noise in the data and to

improve the predictive results with regard to

complexity and accuracy of the predictions, three

optimisation methods were applied: tree-pruning,

bagging and boosting. A common way to cope

with tree complexity is tree-pruning. Optimal

tree-pruning is an important mechanism as it

improves the transparency of the induced trees by

reducing their size, as well as enhances their

classification accuracy by eliminating errors that

are present due to noise in the data (Bratko

1989). There are two types of tree-pruning: for-

ward pruning and post-pruning. When forward

pruning is applied, the expansion of the tree is

stopped when a certain criterion is met. For

example, every leave should contain a minimum

number of instances or no branching is allowed.

Post-pruning on the other hand, means that first a

highly branched tree is constructed. Afterwards,

some of the ending subtrees are replaced by

leaves based on their reliability. The reliability of

the subtrees is evaluated by comparing the clas-

sification error estimates before and after

replacing a subtree by a leave. In the following

experiments, post-pruning was used. By changing

the confidence factor (c), the intensity of pruning

was controlled. The confidence factor is a

parameter that has an effect on the error rate

estimate in each node. When the confidence fac-

tor is increased, the difference between the error

estimate of a parent node and its splits decreases.

In this way, it is less likely that the split will be

pruned. The smaller the value of the confidence

factor is, the larger is the difference between the

error rate estimates of a parent node and its po-

tential splits. Thus, the chance that splits will be

replaced by leaves is higher.

Bagging (Bootstrap aggregation) and Ada-

Boost (Adaptive Boosting) (Witten and Frank

2000) are voting classification algorithms. Bagging

and boosting are used in combination with the

base classifier that creates ‘child’ datasets from a

single ‘parent’ dataset that is originally used for

training. This allows for taking advantage of the

inherent instability of the base classifier. The

instability of a classifier is defined as the tendency

to find large changes in the predicted values

caused by minor changes in the dataset (Breiman

1996). In bagging, the ‘child’ datasets are created

by duplicating some of the instances of the ‘par-

ent’ dataset randomly and deleting others. From

each ‘child’ dataset, a different tree is constructed

that leads to a different prediction. The different

predictions of the ‘child’ datasets are combined

by a majority vote to give the final prediction.

Boosting also creates ‘child’ datasets from a single

‘parent’ dataset, but the difference is that each

new ‘child’ dataset is influenced by the previous

one, as the instances that are duplicated are not

randomly selected. The instances that are incor-

rectly predicted in a dataset are included in the

next dataset as duplicated ones, so that the chance

of a correct prediction of these previously mis-

classified instances improves. These duplicated

instances will affect the training of the model and

therefore also the resulting classification tree.

This procedure continues until a pre-defined

number of iterations is reached, but it stops ear-

lier in case the error estimate is lower than 0.05.

In the following experiments bagging and boost-

ing were applied on the J48 algorithm, which

included binary splits and optimal pruning. The

two techniques are included in the machine-

learning package WEKA. Both techniques

included ten iterations, while the size of the

training datasets created by the two algorithms

was the same as the original training dataset.

Model training and validation

The predictive models were evaluated on the

basis of two performance measures. This required

the derivation of matrices of confusion from the

modelling results that identified true positive

(TP), false positive (FP), false negative (FN) and

true negative (TN) cases predicted by each model

(Fielding and Bell 1997) (Table 3). In this way,

the presence/absence patterns were tabulated

against those predicted.

The first performance measure that was cal-

culated was the percentage of Correctly Classified

Instances (CCI):

CCI ¼ ðTPþ TNÞ
ðTPþ FPþ FNþ TNÞ � 100
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Another performance measure that was cal-

culated was the Cohen’s kappa statistic (Cohen

1960). It is a derived statistic that measures the

proportion of all possible cases of presence or

absence that are predicted correctly by a model

after accounting for chance predictions. It is cal-

culated as:

Landis and Koch (1977) attempted to indicate

the degree of agreement that exists when the

Cohen’s kappa is found to be in various ranges:

£ 0 (poor); 0–0.2 (slight); 0.2–0.4 (fair); 0.4–0.6

(moderate); 0.6–0.8 (substantial); 0.8–1 (almost

perfect).

Model training and validation was based on a

stratified 10-fold cross-validation (Kohavi 1995).

To allow a reliable error estimate of the models,

ten stratified 10-fold cross-validation experiments

were carried out, from which the average

predictive performance was calculated. These

ten-time repeated 10-fold cross-validation exper-

iments allowed for determining the 95% confi-

dence limit of the average predictive

performance, considering that the data were

normally distributed. This confidence limit is

represented in the tables and figures in the results.

For the comparison of the performance of the

different applied techniques a paired Student’s

t-test was performed (Witten and Frank 2000).

The results of the same partitions of the repeated

10-fold cross-validations were compared. For a

two-tailed test, a significance level of 5% was

used.

Results

Model development and validation

In this study, models for the prediction of the

habitat suitability of six macroinvertebrate taxa

were induced by using the J48 algorithm with

binary splits. The predictive results of the con-

structed unpruned trees are presented in Table 4.

The average CCI (%) and Cohen’s kappa statistic

of the repeated ten 10-fold cross-validations with

a 95% confidence interval of the average are

presented, as well as the number of leaves of each

tree. The percentage of CCI was in all cases rel-

atively high. Cohen’s kappa statistic was high in

the models for the prediction of Gomphidae, and

relatively high in the case of Caenidae, while it

had low values in all the other cases. A value of

Cohen’s kappa statistic above 0.4 is considered to

indicate a reliable model, while lower values

indicate poor model performance. The low values

of Cohen’s kappa statistic in the induced models

revealed that most of the predictions were based

on chance and especially the predictive model of

Heptageniidae, for which a kappa value of 0.108

was found. Additionally, the constructed trees in

Table 3 The derivation of the confusion matrix used as a
basis of performance measures in presence/absence
models with true positive (TP), false positive (FP), false
negative (FN) and true negative values (TN)

Actual

Present Absent

Predicted
Present TP FP
Absent FN TN

Table 4 Predictive results of models based on the J48
algorithm without pruning optimisation

Taxon CCI (%) Cohen’s kappa Number
of leaves

Asellidae 66.3 ± 2.0 0.247 ± 0.04 18
Baetidae 68.1 ± 1.7 0.278 ± 0.04 17
Caenidae 66.8 ± 2.1 0.306 ± 0.04 14
Gammaridae 64.3 ± 2.2 0.260 ± 0.04 16
Gomphidae 79.3 ± 1.8 0.583 ± 0.04 14
Heptageniidae 85.6 ± 2.0 0.108 ± 0.06 6

Kappa ¼ ðTPþ TNÞ � ðððTPþ FNÞðTPþ FPÞ þ ðFPþ TNÞðFNþ TNÞÞ=nÞ½ �
n� ðððTPþ FNÞðTPþ FPÞ þ ðFPþ TNÞðFNþ TNÞÞ=n½ �
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most cases included a large amount of leaves,

which increased their complexity and prevented

an ecological interpretation.

Pruning optimisation

In order to reduce the complexity of the con-

structed trees and improve the predictive perfor-

mance of the models, tree-pruning was

performed. Models with different intensity of

pruning were induced by varying the confidence

factor between 0.15 and 0.25. The optimal confi-

dence level of pruning was different for models

predicting the habitat suitability of different taxa.

Paired Student’s t-tests were conducted for all the

induced models in order to compare the average

CCI (%) and Cohen’s kappa statistic over ten 10-

fold cross-validations before and after pruning. In

Table 5 the predictive results of the pruned trees

are presented. A significant increase in the pre-

dictive performance of pruned trees based on the

CCI (%) was detected for all the taxa except for

Gammaridae and Gomphidae. For both taxa, the

predictive performance decreased. However, the

decrease was not significant according to the re-

sults of the Student’s t-test. Cohen’s kappa sta-

tistic increased significantly for Asellidae and

Baetidae, while it decreased significantly for

Heptageniidae. Although the CCI (%) of Hep-

tageniidae increased, Cohen’s kappa was reduced

to a value that revealed a complete unreliability

of the model, while at the same time a failure of

the model to construct a tree was observed. This

is indicated by the fact that the tree consisted of

only one leaf. Although kappa statistic improved

for most of the species, still only one reliable

model was constructed. Also the complexity of

the constructed trees was reduced considerably.

The highest decrease in the number of leaves was

found for Caenidae.

Bagging and boosting optimisation

In an attempt to further optimise the predictive

models, bagging and boosting were applied on the

J48 algorithm that already included binary splits

and pruning. Paired Student’s t-tests were con-

ducted for the comparison of the predictive per-

formance of models based on the J48 algorithm

with and without bagging and boosting. The effect

of bagging and boosting on the predictive per-

formance of the models are presented in Figs. 2

and 3. In Fig. 2, the predictive performance is

estimated by the average CCI (%) of the ten re-

peated 10-fold cross-validations with a confidence

level of 95%. On the other hand, in Fig. 3 the

predictive performance is estimated by the aver-

age of the Cohen’s kappa statistic of the ten re-

peated 10-fold cross-validations with a confidence

level of 95%. When bagging was applied, a sta-

tistically significant increase in the predictive

performance was detected for Asellidae and Ba-

etidae, while the performance of the other models

either increased or decreased but never signifi-

cantly. Boosting had a significant effect on the

predictive performance of Asellidae, Caenide,

Gammaridae and Heptageniidae. In the case of

Heptageniidae, the effect of boosting referred

only to Cohen’s kappa statistic, while it did not

significantly affect the CCI (%). It could be ob-

served from Fig. 2 that the effect of the two

techniques varied in relation to the organism

predicted and did not follow a general trend.

Thus, in the cases of Asellidae and Gammaridae,

the two techniques resulted in improved predic-

tions, while in the case of Caenidae and Gomhi-

dae, a reduced predictive performance was found.

In the case of Heptageniidae, bagging improved

the predictive results, while boosting reduced the

overall performance. The effect of bagging and

boosting on the model performance based on

Table 5 Predictive
results of models induced
on the basis of the J48
algorithm by using
pruning optimisation

Taxon CCI (%) Cohen’s kappa Number
of leaves

Confidence level

Asellidae 68.3 ± 1.5 0.278 ± 0.03 14 0.25
Baetidae 72.5 ± 1.9 0.320 ± 0.04 12 0.15
Caenidae 70.0 ± 1.7 0.351 ± 0.04 3 0.15
Gammaridae 62.2 ± 1.3 0.218 ± 0.03 10 0.15
Gomphidae 78.8 ± 2.0 0.573 ± 0.04 11 0.25
Heptageniidae 90.2 ± 0.50 – 0.017 ± 0.01 1 0.15
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Cohen’s kappa statistic was similar to the one on

the performance based on the CCI (%). How-

ever, there was an exception. It was observed that

boosting led to a significant improvement of Co-

hen’s kappa statistic, although it did not improve

the CCI (%) in the predictive model for Hep-

tageniidae. Nevertheless, the model could be

considered as irrelevant because the Cohen’s

kappa was still lower than 0.4.

In order to obtain a better insight in the way

the two techniques function, the effect of bagging

and boosting on the percentage of correctly pre-

dicted presence and absence cases in each model

was examined. Paired Student’s t-tests were con-

ducted for the comparison of the percentage of

correctly predicted presence and absence cases, as

well as for the overall CCI (%) with and without

the application of bagging and boosting. It was

observed that both bagging and boosting lead to a

significant increase of the percentage of correctly

predicted absence cases. A small decrease of the

percentage of correctly predicted presence cases

was also observed. Bagging did not seem to sig-

nificantly alter the overall CCI (%), while

boosting increased it significantly. In Fig. 4, the

effect of bagging and boosting on the predictions

of presence cases, absence cases, together with

the overall predictive capacity for Gammaridae is

presented. It was obvious that although the two

techniques did not have a considerable effect on

the overall percentage of CCI, there was a sig-

nificant increase of the percentage of correct

predictions as absent and a decrease of the per-

centage of correct predictions as present. This

phenomenon became more pronounced when

bagging was applied.

In most cases in which bagging and boosting

was applied, an increase in the variability of the

predictive results between the different repeti-

tions of 10-fold cross-validation was observed, as

well as an increase on the 95% confidence inter-

vals of the average performances. Thus, the effect

of the two techniques on the different partitions

of the dataset that were used for the repetition of

the stratified 10-fold cross-validation, could be

observed. In Fig. 5, the effect of bagging and

boosting on two stratified 10-fold cross-valida-

tions based on different partitioning of the same

dataset is presented. The model predicts the

habitat suitability for Gammaridae. In Fig. 5a, it

is observed that bagging and boosting caused an

increase on the correct predictions made as

present, and a decrease on the correct predictions

made as absent, while the overall CCI (%) was

relatively stable. In Fig. 5b, bagging and boosting

had exactly the opposite effect, an increase of the

correct predictions made as absent, and a de-

crease of the correct predictions made as present.

The overall CCI (%) also remained stable. The
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Fig. 3 Assessment of bagging and boosting based on
Cohen’s kappa statistic for the six selected macroinverte-
brate taxa in the Axios river (Northern Greece)
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age of Correctly Classified Instances of presence cases,
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contradictive predictive results in these two cases

revealed that although there was a general

trend of the effect of bagging and boosting on

the predictive results, which is indicated by the

average performance of ten repeated 10-fold

cross-validations, the application of the two

techniques could lead to predictive results that

vary not only in relation to the predicted organ-

ism, but also within an individual model. A strong

dependency between the training dataset and the

effect of bagging and boosting was detected, as

different partitioning of the same dataset could

lead to opposite results.

In Fig. 6, the effect of bagging and boosting on

the predictions of presence cases, absence cases

and on the overall predictive capacity for Hep-

tageniidae is presented after ten 10-fold cross-

validations. It is observed that although the two

techniques did not have a considerable effect on

the overall percentage of CCI, there was a sig-

nificant increase of the percentage of correct

predictions as present that reaches 17.8% and a

decrease of the percentage of correct predictions

as absent. This phenomenon became more obvi-

ous after the application of boosting. However,

the variation of the predictions of the presence

cases within the ten repetitions of stratified 10-

fold cross-validation, was very high and seemed to

increase as the percentage of correct predictions

was increasing. The frequency of occurrence of

Heptageniidae in the dataset used was very low

and an examination of the confusion matrices of

the induced models for the prediction of this

taxon revealed that in most cases the models

failed to make any correct prediction of the

presence cases. When the J48 algorithm was ap-

plied without a combination of bagging or

boosting, the algorithm was not able to make

even one correct prediction of the presence cases.

When bagging was applied, one of the nine

presence cases was predicted correctly. When

boosting was applied, maximum two presence

cases were correctly predicted. Thus, the 17.8%

increase of the percentage of correctly predicted

presence cases equalled with only two cases cor-

rectly predicted. This last statement underlines

that even when bagging and boosting seem to

perform well at first sight, a thorough examina-

tion of their effects is needed before applying

these techniques for management purposes.

Discussion

Model development and validation

When using the CCI (%) as an evaluation measure,

decision trees generally performed well to predict

the habitat suitability of the six selected macroin-

vertebrate taxa in the Axios river. However, the
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Fig. 5 The effect of bagging and boosting on the percent-
age of Correctly Classified Instances as present or absent
and on the overall CCI (%) for the prediction of
Gammaridae in the river Axios (Northern Greece). Two
repetitions of 10-fold cross-validation based on two
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low value of the Cohen’s kappa statistic revealed

that most of the models did not yield reliable pre-

dictions, as they were mainly based on chance.

Noise in the data, missing values in the dataset, as

well as the fact that unmeasured input variables

could explain the habitat suitability of the pre-

dicted taxa, are probably the main reasons for the

incapability of some models to make reliable

predictions. In a study on similar models in

Flanders, D’heygere et al. (2003) demonstrated

that some of the most important input variables for

the prediction of the presence or absence of

macroinvertebrates were depth, Kjeldahl nitrogen

and ecotoxicological variables. The introduction of

some structural, physical-chemical and even eco-

toxicological measurements in the dataset, could

therefore improve the predictive capacity of the

induced models. Furthermore, a selection of the

most appropriate input variables could be useful

for an improvement of the predictive performance

of the models (D’heygere et al. 2003). A major

disadvantage of the induced models was the

complexity of the constructed trees. In most cases,

the constructed trees consisted of a large amount

of leaves. In this way, the detection of general

trends in the data was very difficult. Thus, the

ecological interpretation of the results was not

possible, as the trees were unable to offer infor-

mation about the habitat suitability for the macr-

oinvertebrate taxa. The fact that the minimum

number of instances in a leaf was two, in addition

to the criterion used for stopping tree expansion,

lead to the construction of very detailed trees, in

which even individual cases were presented. As a

consequence, the ability to generalise in the

models is being reduced.

Pruning optimisation

The application of tree-pruning resulted in rela-

tively simple and more understandable trees that

could be ecologically interpreted. The confidence

factor that produced optimal results with regard

to the CCI (%) and Cohen’s kappa, varied in

relation to the predicted taxon. Thus, it seems

that in each model the intensity depends on the

data itself. Tree-pruning resulted in a significant

increase of the CCI (%). This increase could be

an indication of the improvement of the accuracy

of the models for some taxa. As the noise of the

data has a reduced effect on the models after

pruning, such an improvement was expected.

However, the effect of pruning on the Cohen’s

kappa statistic was not statistically significant and

most models were still not reliable after pruning.

According to Geurts (2000), pruning reduces the

complexity of the trees significantly and the var-

iance to some extent. On the other hand, pruning

also increases the bias and thus is able to improve

only slightly the accuracy of a model. This could

be a possible explanation for the stability of Co-

hen’s kappa statistic after pruning and the rela-

tively low increase of the accuracy of the model.

Another explanation can be the small size of the

dataset. Additionally, the fact that Cohen’s kappa

does not improve after pruning could be a strong

indication for the inefficiency of the selected in-

put variables to predict the habitat suitability of

the macroinvertebrates. In the predictive model

for Heptageniidae tree-pruning resulted in a sig-

nificant increase of the CCI (%), while Cohen’s

kappa decreased significantly and the model

failed to construct a tree. The fact that Heptage-

niidae has a very low frequency of occurrence in

the dataset is the most probable explanation for

this failure. According to Goethals et al. (2001)

and Manel et al. (2001), the predictive perfor-

mance of models based on decision trees is

strongly related to the frequency of occurrence of

the predicted taxa. Models that predict very fre-

quently or rarely occurring organisms have a very

high CCI (%) and a very low Cohen’s kappa

statistic as the predictions are based on probabi-

listic guesses, while a failure of obtaining a tree is

very probable. The unpruned model for the pre-

diction of Heptageniidae leads to the construction

of a tree that is simple and can be easily ecolog-

ically interpreted. However, this tree does not

represent realistic relationships between the

habitat requirements of that taxon and the envi-

ronmental characteristics, as it relies on a very

restricted amount of instances to extract this

information. This is also indicated by Cohen’s

kappa statistic. The fact that the pruned model for

the prediction of Heptageniidae did not lead to

the construction of a tree was an improvement,

as the model became more ‘‘honest’’ and showed

that the extraction of knowledge about the
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ecological requirements of the predicted taxon

was not possible. The improvement of the trans-

parency of the induced models in all cases dem-

onstrates that tree-pruning can be of advantage

when the predictive models are used in decision-

making of river restoration and conservation

management. Similar conclusions were made by

Bratko (1989) and Goethals et al. (2001).

Bagging and boosting optimisation

According to Geurts (2000), a combination of

tree-pruning and bagging may lead to more

accurate predictions and even if this does not

happen, the computational time is always less,

without any decrease of the predictive perfor-

mance of the model. Therefore, bagging and

boosting were applied on the pruned trees for

further optimisation of the predictive results.

First, bagging did not seem to have a statisti-

cally significant effect on the predictive perfor-

mance of most of the models. If bagging had a

significant effect, it would either increase or de-

crease the performance. Similarly, the effect of

boosting varied in relation to the predicted

organism. In the models for the prediction of

Asellidae, Baetidae and Gammaridae, the two

techniques improved the predictive results, while

in the predictive models for Caenidae and Gom-

phidae the application of the two techniques re-

sulted in a decreased predictive performance. In

the case of Heptageniidae, the CCI (%) de-

creased but the model was able to make more

reliable predictions, as indicated by Cohen’s

kappa statistic. It seems that the effect of bagging

and boosting on the models depends strongly on

the dataset. The fact that the gain in the predic-

tive performance of models when applying

boosting decreases as the noise in the data in-

creases, in addition to the fact that boosting can

quickly overfit a dataset are the most probable

explanations for the cases that boosting does not

improve the predictive performance of some of

the models (Maclin and Optiz 1997). Boosting can

over-emphasise examples of the dataset that are

noisy. In this way, it can reduce the predictive

performance. However, there are cases where

boosting outperforms the individual classifier and

also bagging. According to Maclin and Optiz

(1997), bagging is more resistant to the noise in

the dataset. In most cases, bagging gives better

predictive results than the individual classifier.

However, there are also cases where it was not

effective. Similar conclusions were also reached

by Quinlan (1996).

As it was not possible to make any conclusion

about the general effect of bagging and boosting

on the models when looking at CCI (%) and

Cohen’s kappa statistic, the percentage of cor-

rectly predicted presence and absence cases with

each model was examined. Although there were

cases where the two techniques had no effect on

the CCI (%), there was a tendency to increase the

percentage of correct predictions of absence and

decrease the percentage of correct predictions of

presence. This function of bagging and boosting

could be useful for decision-making in river

management if it would increase the percentage

of correct predictions of presence. In that case,

more ecological information on the habitat

requirements of the predicted taxa could be ob-

tained. However, the variability of the effect of

the two techniques on different models, implies

that their convenience is strongly related to the

dataset on which these techniques are applied and

this should be examined first. Looking at the ef-

fect of the two techniques in different repetitions

of 10-fold cross-validations within the same

model, an even larger variability was observed.

This indicates that the replications of examples in

the dataset that are produced by bagging and

boosting can even lead to contradictive predic-

tions, which make the function of the two tech-

niques on this dataset less clear. The possible

outcomes of the application of bagging and

boosting should be carefully examined, as in some

cases it improves and in some others it reduces

the accuracy of the models, as well as their

practical applicability. Also, the fact that both

techniques produced complicated results, which

could not be easily ecologically interpreted, re-

duced their suitability for management purposes

even more.

Practical applications

Regarding practical applications of classification

trees in water management, the set of studies

Aquat Ecol (2007) 41:399–411 409

123



related to macroinvertebrates is very limited.

Practical studies were established by D’heygere

et al. (2002) and Goethals et al. (2002). Both

studies can only called ‘preliminary’, seen the

small datasets that were available for the studies.

D’heygere et al. (2002) researched the use of

classification trees to set up a monitoring network

in the Dender river (Flanders, Belgium) for the

implementation of the European Water Frame-

work Directive (EU 2000). In particular the effect

of seasonality was analysed. In this manner, the

trees could help to reduce the sampling costs,

seen not for all stream types, a multi-seasonal

sampling seemed to be interesting due to the very

poor ecology present in the Dender. The study of

Goethals et al. (2002) aimed at analysing the

ecological niches of macroinvertebrates in the

Zwalm river basin (Flanders, Belgium) and check

the convenience of these models to make pre-

dictions on river restoration projects. Classifica-

tion trees were constructed for all taxa collected

during the 60 samplings in the headwaters of the

Zwalm river basin. The poor performance of most

induced trees had probably its origin in the small

size of the dataset. Therefore, also other methods

will be applied (ANN, support vector machines

and multivariate statistics), that can maybe better

deal with the size of the dataset or reveal other

specificities of the collected data.

This study therefore illustrated that three types

of model validation are at least necessary to make

sure that this type of models can be used in water

management: theoretical validation based on well

chosen performance indicators (thus also taking

care of the prevalence of the taxa), comparison

with existing ecological knowledge and practical

simulation exercises. On top of this, the willingness

of river managers to use these data driven ecolog-

ical models for practical applications is rather low,

because of lack of transparency and difficulties

with predictions outside the training range.

Conclusions

This paper explores the induction of models for

the prediction of the habitat suitability of six

benthic macroinvertebrate taxa in the Axion river

in Northern Greece. An evaluation is made of

three model optimisation techniques, namely tree-

pruning, bagging and boosting. The results of the

present study demonstrate that although the

models intrinsically proved to have a relatively

high predictive power, the noise in the dataset and

the inappropriate input variables actually pre-

vented them to some extend, from making reliable

predictions. Although tree-pruning did not seem

to improve significantly the reliability of the in-

duced models, it reduced considerably the tree

complexity. In this way, it increased the trans-

parency of the trees, allowing for a clear ecological

interpretation of the induced models. It can thus

be concluded that tree-pruning has a high poten-

tial when applied to models used for decision-

making in river restoration and conservation

management. The effect of bagging and boosting

varied considerably between the different models,

as well as within different repetitions of 10-fold

cross-validation in an individual model. In some

cases the predictive performance was improved,

while in others it was stable or even reduced. The

effect of bagging and boosting seemed to be

strongly dependent on the dataset on which the

two techniques are applied. The present study

demonstrated that bagging and boosting is capa-

ble of improving the predictive performance of

ecological models when properly applied, while an

application on inappropriate datasets can result in

worse predictive performance.
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