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Errors in instar determination of mayflies (Ephemeroptera) and
stoneflies (Plecoptera) using the simple frequency, Janetschek,
Cassie and Dyar’s law methods

THOMASJ.FINK Department of Entomology, Florida A & M University,
Tallahassee, Florida, U.S.A.

SUMMARY. 1. The reliability of the simple frequency, Janetschek,
Cassie and Dyar’s law methods for determining or corroborating instars of
mayflies and stoneflies was evaluated using data from published studies, a
population of Baetisca rogersi and populations simulated through use of
random numbers and generated normal distributions.

2. The Janetschek and Cassie methods are variations of the simple
frequency method that offer no significant advantage. Modes of the Cassie
method, thought to represent instars, are much more difficult or
impossible to detect than are the corresponding peaks of the other two
methods.

3. Overlap in size between adjacent instars can lead to false instar peaks
or modes in frequency plots. The potential for overlap in mayflies and
stoneflies is greatly increased, compared to other insects, because of their
large number of instars and known developmental variability. The normal
distribution simulations demonstrated that instar size variability as low as
5-7.5% COV (coefficient of variability) may lead to false instar peaks
when the number of instars is in the typical range. These simulations also
indicated that even simple frequency plots with distinct peaks may result in
inaccurate instar determinations.

4. The number of size classes used in an analysis was correlated with the
number of peaks or modes revealed. The number of peaks greater than
zero in the Janetschek plots for the Baetisca rogersi population varied from
5to 53 as the number of size classes was varied from 20 to 188. Similarly for
the random number simulations, the number of peaks varied from 6 to 41
as the number of size classes varied from 22 to 127.

5. Dyar’s law semi-logarithmic plots do not corroborate instars
determined through frequency methods, because the uniform spacing of
‘instar’ data points is the direct result of the uniform spacing of peaks in
frequency plots of most data sources (including random numbers),
whether or not peaks actually indicate instars. Also Dyar’s law plots will
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‘corroborate’ different numbers of instars depending on the peak selection
criteria used. The potential for corroborating instars through supplemental
rearing and best-fit analysis is discussed.

6. The future of mayfly—stonefly instar determination lies in the
increased and more rigorous application of the rearing and Palmen body

(mayflies only) methods.

Introduction

Insect development may be defined as the
progressive changes in size, morphology and
physiology of the insect throughout the insect’s
life cycle. Moulting and the related processes of
apolysis and new cuticle formation are vital parts
of insect development that lead to the formation
of a series of instars. Our understanding of the
biology of many insects will be greatly improved
when the number of instars and degree of
development per instar are correlated with
environmental factors. Unfortunately, methods
of instar determination suffer from several
severe problems.

Rearing and the simple frequency method are
the two most widely used methods. Rearing
directly determines instars through observations
of exuviae; however, logistical problems in
culturing insects preclude the universal applica-
tion of rearing. By contrast, the frequency
method is simple to use and easily applied to
field populations. Instars are indirectly deter-
mined by this method through a plot of the
number of individuals (collected throughout at
least one complete life-cycle) per size class,
where each distinct peak in the plot infers one
instar (Figs. 1-3).

Apparently, the simple frequency method has
successfully been used to determine instars for
many species, but has been inadequate for
others (see references in Fink, 1980, page 371).
Gaines & Campbell (1935) and Schmidt, Camp-
bell & Trotter (1977) have demonstrated for
lepidopteran larvae that the simple frequency
method will only yield clear results for popula-
tions with a fairly homogeneous rate of develop-
ment and number of instars.

In the last decade workers on mayflies and
stoneflies have used increasingly the simple
frequency, Janetschek and Cassie methods to
determine instars (Table 1). The Janetschek
method (Janetschek, 1967) is currently the most
popular and requires the calculation of a gliding

mean (running mean or moving average) for
each simple frequency size class; for the xth size
class the gliding mean (¥,) may be calculated as
the quantity

Yx=[(Yx—2+Yx—l+Yx+ Yx+1+Yx+2)/5]

The gliding mean values are then subtracted
from the respective simple frequency values to
yield positive and negative values. Plotting these
values results in a graph, the periodic
maxima—minima or Janetschek plot, in which
each distinctive peak is presumed to indicate an
instar (Fig. 1).

The Cassie method (Harding, 1949; Cassie,
1950, 1954, 1963) requires the calculation of
cumulative size frequency percentages from the
original size frequency data. These values are
then plotted on the probability axis of probabil-
ity paper versus size classes on the arithmetic
axis. The component (e.g. instar, age class)
distributions of a polymodal distribution are
presumably indicated by modes and inflections
in the plot. A mode, analogous to a peak in the
simple frequency and Janetschek methods,
indicates a ‘relatively rapid’ increase in cumula-
tive frequency percentage due to an accumula-
tion of individuals in a restricted size range
(Figs. 4 and 5). The mode is thought to represent
one component of the total distribution, while
an inflection indicates little or no accumulation
of individuals and represents the gap between

‘two successive components. The range, mean

and standard deviation can be estimated for each
component by plotting adjusted values on
probability paper; however, aquatic entomolog-
ists have not been concerned with this aspect of
the Cassie method.

Only two workers have expressed concern
about the reliability of the above methods for
determining instars of mayflies and stoneflies.
Winterbourn (1966) could not reliably deter-
mine the number of instars for two New Zealand
stonefly species using the Cassie method. be-
cause of considerable size variability resulting
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FIG. 1. Simple frequency and Janetschek periodic maxima—minima plots of size—frequency data from
Tricorythodes minutus nymphs (both sexes): A—B, nymphal exuviae (N=244); C—D, whole nymphs (N=2913). A
and C are simple frequency plots. B and D are Janetschek periodic maxima—minima plots using the JN gliding
mean. Data taken from simple frequency plots of Newell (1976) Figs. 21 and 23 (corresponding to Fig. 10 of Newell

& Minshall, 1978).

from extensive delayed egg hatching. Fink
(1980) in a general review of mayfly instar
determination methods and later (1982) in a
critical analysis of the number of instars of
Stenonema modestum noted the great similarity
between the simply frequency, Janetschek and
Cassie methods, and that these methods could

only be used reliably with homogeneously
developing mayfly populations, thereby exclud-
ing most species. The purpose of this paper is to
show in detail why the simple frequency,
Janetschek, Cassie and even Dyar’s law methods
are not suitable for determining or corroborat-
ing instars of these insects. An outline of the
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logic and procedures used in evaluating these
methods follows below.

‘While a cast body cuticle is proof of a moult
and new instar, a peak or mode can only suggest
the possibility of an instar. My analysis of
frequency methods (simple frequency, Janets-
chek and Cassie) concerned the question of how
reliably does a peak indicate an instar. The
results—discussion begins with a comparison of
the three methods to determine if the Janetschek
and Cassie methods are significant improve-
ments on the simple frequency method.

The next section concerns how sufficient
overlap in size between successive instars can
lead to false instar peaks or modes in frequency
plots. The potential for overlap in mayflies and
stoneflies is discussed in respect to their large
number of instars and known developmental
variability. The effect of different degrees of
overlap on the number of peaks or modes in
frequency plots was tested by creating appropri-
ate simulated mayfly populations using gener-
ated normal distributions. These simulations
(one normal distribution was created for each
chosen instar) allowed me to test the resolving
abilities of the frequency methods because the
known number, location, shape and overlap of
the distributions could be compared to their
manifestations in the plots of the simple
frequency (Fig. 6) and Janetschek methods.

The third section investigates the effect of the
number of size classes on the number of peaks or
modes in frequency plots. The number of size
classes depends on the chosen size class interval
and the size range of the organism; because the
interval and range can vary within wide limits so
must the number of size classes. A greater
number of size classes partitions the data more,
thereby potentially resulting in more peaks.
Peaks would not indicate instars if the number
of peaks can be altered simply by altering the
number of size classes. The effect of the number
of size classes was tested by varying the number
of size classes for Baetisca rogersi and random
number simulated mayfly populations (Table 2)
and then counting the number of peaks in the
plots using the same peak selection criteria. A
linear regression was run on the number of size
classes versus the number of peaks using the
above data and that from the studies listed in
Table 1.

The penultimate section concerns methods
which have been or may be used to corroborate
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the results of frequency methods. Foremost of
these methods is Dyar’s ‘law’. Modern use of
Dyar’s law is reflected in semi-logarithmic plots
of instar frequency data as shown in Fig. 7.
Instars are generally believed to be confirmed
when the plot is relatively straight and uniform
spacing exists between the designated instar data
points. I test that hypothesis by analysing
semi-logarithmic plots of the data from the
normal distribution and random number simula-
tions and from some of the studies listed in Table
1. Also the effect of the number of instars and
size range of an insect on the Dyar’s law mean
progression factor (the reciprocal of Dyar’s
(1890) ratio) is studied (Table 3). Other
corroborative methods discussed are sup-
plemental rearing and best-fit analysis.

The final section provides conclusions and
suggestions for future instar analysis of mayflies
and stoneflies.

Methods

The plots of the simple frequency, Janetschek
and Cassie methods were carefully analysed and
compared for many of the studies listed in Table
1. Janetschek plots were traced and superim-
posed on the corresponding simple frequency
plot to compare the relative position and
prominence of peaks. Cassie plots were also
traced and modes were independently deter-
mined. The simple frequency and Janetschek
plots of Newell (1976) and Newell & Minshall
(1978) were replotted (Fig. 1) from data taken
from their simple frequency plots to demons-
trate clearly the similarity between the two plots
of their data. Kondratieff & Voshell’s (1980) raw
data (Kondratieff, pers. comm.) were used to
plot the simple frequency and two sets of
periodic maxima—minima values, calculated
through use of two different gliding means, JN
and JL, as described below.

Different gliding means were used to observe
their effect on the Janetschek plot. The gliding
mean used by other investigators (Table 1) is
described in the introduction and will be called
the JN gliding mean. The second gliding mean
will be referred to as the JL gliding mean and
was calculated as

Yx= [(Yx+ Yx+1 + Yx+2+ Yx+3+ Yx+4)/5]
Most investigators (Table 1) using the Janets-
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chek method have expressed serious concern
over the ‘loss of data’ at both ends of the
Janetschek plot because of the nature of the
gliding means. Actually, there is no loss of data
since the original simple frequency distribution
can always be referred to. Also, all size class
values can be preserved in some fashion, as was
done in this study, simply by creating imaginary
size classes of zero frequency value at both ends
of the original simple frequency distribution.
For example, the respective JN and JL gliding
means for the last size class, Y.y, were calcu-
lated as

Yy=[(Yap-2+ Yip_1 + Y+ 0+0)/5]
Y =[(Yy+0+0+0+0)/5]

Six different body characters were measured
for 178 female Baetisca rogersi nymphs collected

by M. L. Pescador. To avoid complicating
factors of sexual dimorphism, only nymphs
mature enough to be sexed were used. These
nymphs approximately represent instars 6—12
or 13 as determined by Pescador & Peters (1974)
through rearings. The data for each character
were analysed by the simple frequency, Janet-
schek and Cassie methods as indicated in Table
2A and plots were constructed similar to Figs. 2
and 4. Simple frequency and Janetschek values
not plotted were examined by arranging each
set of values in order of ascending size class and
then choosing higher or positive values (peaks)
which were bordered on both sides by lower or
negative values. This made it possible to detect

-accurately the comparative location and number

of simple frequency and periodic maxima peaks
without actually plotting the data.

TABLE 2. Summary of analyses used to evaluate the simple frequency, Janetschek and Cassie instar determina-

tion methods*

Instar
Measurement No. of determination
character or No. of JN per. method
no. of Size class size max. peaks
Data source specimens interval (mm) classes. >0 S IJN JL C
(A) Baetisca rogersi Head length 0.05 23 6 P P P P
Berner 0.03 37 10 P P P P
0.02 56 13 P P P P
(178 female nymphs) Head width 0.10 20 5 P P P P
0.05 40 12 P P P P
0.03 66 19 P P P P
Carapace length  0.10 56 15 P P P —
0.05 113 34 E E E —
0.03 188 53 E E E —
Carapace width 0.20 2 10 E E E —
0.10 64 18 E E E —
0.05 127 35 E E E —
Spine length 0.10 42 15 E E E —
0.05 84 25 E E E —
Abdominal width  0.20 24 6 E E E —
0.10 48 11 E E E —
0.05 96 19 E E E —
(B) Random numberst 500 0.06 22 6 E E E P
0.03 43 16 P P P P
0.02 64 20 P P P P
0.01 127 35 P P P P
1000 0.06 22 6 E E E —
0.03 43 11 P E P —
0.02 64 20 P E P —
0.01 127 39 E E E —

* Abbreviations: C, Cassie method; E, examined (see Methods); JL, Janetschek method using the JL gliding
mean; JN, Janetschek method using the JN gliding mean; P, plotted (see Methods); S, simple frequency method.
+ Parameters and data not shown for the 2000, 3000, 4000 and 5000 specimens’ cases; these are similar to those

cases shown.



Various mayfly populations were simulated
through use of computer-generated random
numbers and analysed by two or more of the
frequency methods as indicated in Table 2B.
Each random number simulated the head length
of an individual mayfly, and random numbers
were generated between limits that corres-
ponded to the approximate head lengths of the
first and final nymphal instars of a real
Choroterpes mexicanus population studied by
McClure & Stewart (1976). All necessary
calculations, plots and analyses were similar to
those outlined for Baetisca rogersi.

The range of head lengths for the normal
distribution simulations were also patterned
after the Choroterpes mexicanus population. A
normal distribution was created for each desired
instar through calculations performed on a
Texas Instruments 58C calculator using the
Normal Distribution Program ML-14.
Populations with 16, 19 and 25 instars were
simulated, and the means of successive instars
were separated by the following respective
constant progression factors, 1.20, 1.16 and
1.12. The spread of each individual instar
distribution was determined by a standard
deviation which would yield a similar coefficient
of variation (COV=s.d./£x100%) for all the
instars. The COV compares the relative variabil-
ity of samples (Sokal & Rohlf, 1981) and so
instars of a particular population in these
simulations were relatively similar in head
length variability. COV values of 5%, 7.5% and
10% were used. The 5% value was considered to
be representative of insects whose instars are
homogeneous, few and easily separable in a
frequency plot (such as calculated from data in
Poston, Hammond & Pedigo, 1977 and Roberts,
Proctor & Phillips, 1978). The 7.5% and 10%
COV values were chosen to show how a
moderately greater degree of size variability
could affect instar determination by frequency
methods. Each instar of each simulated popula-
tion was represented by about 100 specimens.
Instar distributions of each population were
plotted separately on the same simple frequency
plot (adjacent or overlapping distributions were
plotted in different colours) and then this plot
was compared to a normal simple frequency plot
of the same but combined data (Fig. 6).

Mean progression factors (the reciprocal of
Dyar’s (1890) ratio) were calculated for different
numbers of instars for the same and different
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size ranges of an hypothetical insect, whose first
and final nymphal instar head lengths were
modelled after respective values of Choroterpes
mexicanus (McClure & Stewart, 1976) (Table
3). Calculations were performed on the 58C
calculator using the U.S. Method Compound
Interest Program ML-18, since the progression
factor is related to the idea of compound
interest. The ML-18 program calculates the
compound interest rate when the initial (first
instar size) and final values (final nymphal instar
size) and number of compounded periods (total
number of nymphal instars minus one) are
known. The compound interest rate multiplied
by the size of the first instar yields the absolute
increase in size between the first and second
instars. The second instar size/first instar
size=the progression factor. Final nymphal
instar head lengths of 2000, 4000 and 8000 gxm,
which are not found in nature for Choroterpes
mexicanus, were chosen to show the effectsof a
greatly increased size range on the progression
factor.

Results and Discussion

Comparison of the simple frequency, Janetschek
and Cassie methods

Many of the investigators listed in Table 1
apparently believed that the Janetschek and
Cassie methods offered additional insights not
provided by the simple frequency method alone
so that ‘true instar’ peaks could be reliably
delimited. Also, because all three methods were
thought to be independent, similar results by
two or three methods were considered as
additional corroboration for their instar claims.

An analysis of all available plots of Table 1
studies (Fig. 1), of Baetisca rogersi and of
random number data (Table 2, Figs. 2—5)
revealed that peaks or modes occurred in the
same size-class location in the final plots of all
three methods. However, this is to be expected
because of their similarity.

The Janetschek and simple frequency
methods are distinguished by the use of gliding
means. Apparently, gliding means were be-
lieved by the users of the Janetschek method to
be the theoretical basis of how this method
determined which peaks of the simple frequency
distribution represented instars (e.g. Harper,
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FIG. 2. Simple frequency and Janetschek periodic maxima—minima plots of size —frequency data from 178 female
Baetisca rogersi nymphs (half-grown to mature) using three size class intervals: A, 0.05 mm (23 size classes); B,
0.03 mm (37 size classes); C, 0.02 mm (56 size classes). The top plot in each group is the simple frequency plot; the
remaining two plots in A are periodic maxima—minima plots whose values were calculated with the JN (open dots)
and JL (closed dots) gliding means; and the bottom plot in groups B and C is a JN periodic maxima—minima plot.

1973) and were considered so important that the
investigators shown in Table 1 who published
the Janetschek plot also published the gliding
mean plot which is not used at all in determining
instars.

The gliding mean plot does not show the
general pattern of the population’s size structure
as Janetschek (1967) claims, because the popula-
tion exists in reference to time. Rather, this plot
shows the general pattern of combined
size—frequency data which is organized without

reference to time. More importantly, the
subtraction of the gliding means from the simple
frequency values cannot unmask the ‘true instar’
data from other ‘non-instar’ data, because the
variability of the data is maintained in the gliding
mean values. Comparing any two adjacent size
classes indicates that the gliding means of the
two size classes would differ slightly in most
cases, since four of the five simple frequency
values used in calculating either JN or JL gliding
means would be the same for both size classes.
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FIG. 3. Simple frequency and Janetschek periodic maxima—minima plots of size—frequency data from 500
random number simulated mayfly nymphs using three size class intervals: A, 0.03 mm (43 size classes); B, 0.02 mm
(64 size classes); C, 0.01 mm (127 size classes). Rest of legend as in Fig. 2.

Subtracting the similar gliding means from the
original frequency values results in maintaining
the relative difference in magnitude between the
two size classes, but the simple frequency plot
must be displaced downward because each
simple frequency value is now decreased by the
amount of the corresponding gliding mean. Thus
all periodic maxima—minima plots, including
both JN and JL derived plots, observed in the
present study for all data sources (published
papers of Table 1, Baetisca rogersi and random
number data) were identical in the location of
almost all peaks and were even very similar in
shape as well (Figs. 1-3; and see Fink, 1982).

Essentially, the subtraction of gliding means
from the original simple frequency data is just a
mathematical exercise which centres an altered

‘facsimile of the simple frequency plot, the

Janetschek plot, around a common horizontal
axis. This may make the visual comparison of
peaks slightly easier (Figs. 1—3) but a simple
frequency plot, in which peaks are not easily
compared, probably indicates developmental
variability considerable enough so that all
frequency methods would be unreliable.

A variation of the simple frequency method is
the Cassie method although it produces a plot
very different in appearance (compare Figs. 2
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size classes); C, 0.02 mm (outer bottom scale, 56 size classes). Arrows point to modes for plots B and C (modes may
be difficult to detect). Compare modes to peaks of simple frequency and Janetschek periodic maxima~minima plots

of Fig. 2. The 99.99% axis is rounded off to 100%.

and 4, 3 and 5). Because cumulative frequency
percentage values are calculated from simple
frequency values, a mode, a ‘sudden’ increase in
cumulative frequency percentage, must occur at
exactly the same position as its corresponding
simple frequency peak, which is a ‘sudden’
increase in frequency.

Due to the non-linear probability axis and
curved pattern of the plot, the detection of
modes and comparison of the relative magnitude
of modes was much more difficult (or even
impossible) than the detection and comparison
of the corresponding peaks of the simple
frequency and Janetschek plots. Modes could
not be detected reliably for the larger size class
interval random number data (Fig. 5), even
though corresponding peaks were easily visible
in the simple frequency and Janetschek plots
(Fig. 3). To ensure that afl modes were detected
in any Cassie plot, it was necessary to compare
them against peaks in the corresponding simple

frequency and Janetschek plots. In papers 4 and
5 of Table 1, chosen Cassie ‘instar’ modes were
the same as the chosen ‘instar’ peaks of the other
two methods, but were often as distinct or even
sometimes less distinct in appearance than
modes which were ignored.

The Cassie method has been used primarily in
fisheries biology and was not generally intended
to be used for populations with very hetero-
geneous development nor for distributions
containing more than a few component distribu-
tions (Harding, 1949; Cassie, 1954, 1963;
Taylor, 1965; Cohen, 1966; Bhattacharya, 1967;
Yong & Skillman, 1975). As will be shown
below, mayfly and stonefly populations do not
meet these restrictions.

The cause and importance of overlap

The analysis of polymodal distributions has
beencalled ‘. . . a notoriously difficult mathema-
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FIG. 5. Cassie probability paper plots of size—frequency data from 500 random number simulated mayfly nymphs
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Arrows point to some of the modes present in the plots. Compare modes to peaks of simple frequency and

Janetschek periodic maxima—minima plots of Fig. 3. The 99.99% axis is rounded off to 100%.

tical task.” (Harding, 1982), the work has been
proceeding on this topic since at least 1894
(Pearson, 1894). Overlap of the size distribu-
tions of adjacent components (e.g. age classes,
instars) is the reason for this difficulty.

Linear measurements, such as head width and
body length, are usually or approximately
normally distributed (Snedecor & Cochran,
1967) and in a frequency plot of known and
characterized instars, a mean determines the
location of each instar distribution along the
abscissa, while the standard deviation, a mea-
sure of variability, determines the dispersion of
the distribution on either side of the mean.
Overlap between the distributions of adjacent

instars can occur through a suitable combination
of closely spaced means and wide dispersions.
Because instars of field populations are not
known or characterized, overlap becomes very
important since it can result in an accumulation
of frequency values that produce peaks which do
not represent instars.

The average progression factor refers to the
geometric separation between the mean
measurement values of adjacent instars. Over-
lap thus becomes more likely with low progres-
sion factors. The average progression factor is
reduced when the number of instars is increased
for the same size range (Table 3), and the
progression factor is affected much more by the
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TABLE 3. Effect of the number of instars on the mean progression factor for hypothetical
insects
No. of instars 4 8 12 16 19 25 16 16 16
Head length (um)
First instar 9% 9 9 9% 9 9 9% 9% 90
Final instar 1390 1390 1390 1390 1390 1390 2000 4000 8000
Mean progression factor* 2.49 148 128 120 1.16 1.12 123 129 135

* Values shown are rounded off.

number of instars than the size range (Table 3).
Progression factors for mayflies and stoneflies
are lower than those of most other insects
because these aquatic insects moult about 3—5
times more. The more closely spaced instars of
mayflies and stoneflies might be resolved by
frequency methods if the instars varied little in
size.

The overwhelming evidence for mayflies and
stoneflies, however, indicates considerable de-
velopmental variability (Rawlinson, 1939;
Hunt, 1953; Trost & Berner, 1963; Pescador &
Peters, 1974; Snellen & Stewart, 1979; Grant &
Stewart, 1980; Humpesch, 1981), and has been
most clearly documented in studies which have
been able to rear separately, under constant
conditions, individual specimens throughout
their entire immature life (Degrange, 1959;
Brittain, 1973; Cianciara, 1979; Clifford,
Hamilton & Killins, 1979).

Greater variability probably occurs under
natural conditions because individuals would be
exposed to a greater range of environmental
conditions due to different microhabitats and
prolonged oviposition and egg hatching periods.
In the studies listed in Table 1 heterogeneous
development is indicated by the presence of a
large range of size classes per sampling date
(papers 2—9). This is further reflected by simple
frequency plots (papers 1, 2, 4—6, 8, 10; Fig. 1)
which are far.more complex than the plots of
those lepidopteran species whose instars could

not be resolved by the simple frequency method
in the studies of Gaines & Campbell (1935) and
Schmidt et al. (1977).

Other examples of the variability of mayfly
and stonefly development include observations,
for many species, of large size differences of
imagoes collected at different times during the
emergence period (Khoo, 1968; Sweeney &
Vannote, 1978; Illies, 1979; papers 5 and 7 of
Table 1), and sexual size dimorphism (Hunt,
1953; Brittain, 1973; Pescador & Peters, 1974;
McCafferty & Huff, 1978; papers 3 and 5—8 of
Table 1). The sexes, unfortunately, cannot
usually be routinely identified until relatively
late in the life cycle when external genitalia or
secondary sexual characters are sufficiently
distinct. Sexual dimorphism may have confused
frequency data for studies listed in Table 1, and
also led several investigators (papers 3, 5 and 6)
to conclude that females, because they were
larger, moulted more often than males. Howev-
er, an alternative hypothesis is that females
moulted about as frequently as males but
increased more in size after some moults.
Frequency instar analyses may be further
compounded if different body parts grow at
different rates, thereby possibly leading to
different instar determinations depending on the
body part selected. Allometric growth has been
demonstrated in the mayflies Leptophlebia
cupida (Say) (Clifford, 1970a, b; Clifford et
al.,1979) and Baetisca rogersi (Savage & Fink,

TABLE 4. Results of normal distribution simulations

Size class No. of size No. of No. of

COV (%) interval (mm) classes instars peaks
5 0.01 147 16 16

5 0.01 145 19 18

5 0.01 149 25 34+

5 0.02 74 16 12-13
5 0.03 49 16 11-12
7.5 0.01 154 16 35
10 0.01 159 16 32

5 0.01 147 16 & 19 14
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unpublished data). In Chironomidae, certain
body measurements resulted in easily analysable
frequency plots while others yielded more
ambiguous plots (Soponis & Russell, 1982 and
pers. comm.).

The normal distribution simulations indicated
that accurate frequency method instar deter-
mination for arthropods with large numbers of
instars is possible only within narrow limits of
instar size overlap. Instars were resolved only
when the total number of instars and COV (the
coefficient of variation) were respectively less
than or equal to 19 and 5%, and the number of
size classes was not reduced from 145-147
(Table 4, Fig. 6). Exceeding those values yielded
erroneous results due to sufficient overlap
between adjacent instars. Increasing the number
of instars alone from only 16 to 19 resulted in a
greater overlap between the normally distri-
buted instars, and the overlap for 19 instars and
5% COV approached the overlap for 16 instars
and 7.5% COV. Increasing the number of
instars to 25 with a 5% COV resulted in an instar
determination almost 10 instars higher than the
actual number (Table 4). When COV was
increased from 5 to 7.5 or 10% for the 16 instar
population, an instar determination value about
double the actual number resulted (Table 4, Fig.
6A). COV values for instars of other insects and
arthropods between 6% and 7.5% or higher are
not uncommon (such as calculated from data in :
Schroeder, 1968; Ward & Cummins, 1978; Nair,
1978; Mizell & Nebeker, 1979; and reported by
Soponis & Russell, 1982). COV values calcu-
lated for the instars of the seven Nemoura
avicularis Morton females reared by Brittain
(1973) ranged from 4.8% to 14.2%, with an
average of 8.9%. Clifford et al. (1979) reported
COV values for Leptophlebia cupida nymphal
instars as high as 13.

The normally distributed instar data were
further manipulated, by mixing equal numbers
of 16 and 19 nymphal instar populations (each
with 5% COV, and with first and final nymphal
instars of the same size), to simulate instar
number variability within a population. Essen-
tially this would serve to increase the COV
values for many of the instars thereby resulting
in greater overlap, probably inaccurate results
(i.e. number and location of peaks) and a more
complex plot. Generally this occurred; while
instars were accurately represented in the
separate plots of each subpopulation (Figs. 6B,

C), the combined plot showed only about 14
peaks (Fig. 6D). Many of the peaks in the
combined plot actually represented two groups
of nymphs which differed in the actual number
of instars by up to three (Fig. 6D). Unexpected-
ly, the combined plot was simple in appearance
and therefore gave no indication that its peaks
did not accurately reflect instars.

The relative complexity of the original simple
frequency plot is likely to indicate the reliability
of frequency methods. Very simple plots with
large, clearly separated distinct peaks might
indicate the presence of fairly homogeneous
instars, whereas complex plots indicate heter-
ogeneous development. Gaines & Campbell
(1935) and Schmidt et al. (1977), however, found
that even simple looking frequency plots could
be misleading. Vaught & Stewart (1974) be-
lieved they had correctly determined instars for
737 Neoperla clymene stonefly nymphs through
use of the simple frequency method for both
wing-pad length and head width data, since the
number of peaks was the same in both plots and
peaks were quite distinctive. However, the plots
of the two measurement characters were very
different in shape despite being based on the
same specimens; for example, there were about
twice as many ninth instar head width specimens
as there were ninth instar wing-pad length speci-
mens. Thus, all peaks in the two plots do not
indicate instars. The conclusion from the normal
distribution simulations and the above studies is
clear: the accuracy of frequency methods cannot
be evaluated based on the frequency plot alone.

Effect of the number of size classes

Alllinear regressions of number of size classes
versus number of periodic maxima peaks greater
than zero resulted in very high positive correla-
tion coefficients (P<0.001). The correlation
coefficient (r), 7, N (number of data points),
and the predictive regression equation
(y=mx+Db) are: Baetisca rogersi data, 0.98, 0.96,
17, y=0.28x—0.25; random number data, 0.99,
0.99, 24, y=0.31x+0.09; data from Table 1
studies (excluding Vaught & Stewart, 1974, and
Sephton & Hynes, 1982), 0.92, 0.85, 12,
y=0.26x—0.68; above data sources combined,
0.97, 0.94, 53, y=0.28x—0.17. The number of
size classes alone accounted for 85—-99% of the
total variation in the number of peaks or modes.
Thus, the number of peaks or modes in the plots



of all frequency methods can be varied greatly
simply by altering the number of size classes. For
the Baetisca rogersi data (only female nymphs in
the upper 50 percentile size range were used),
the number of periodic maxima peaks greater
than zero varied from 5 to 53 as the number of
size classes was varied from 20 to 188 (Table 2A,
Fig. 2). Rearing (Pescador & Peters, 1974) and
Palmen body (Fink, unpublished data) data
indicated about 12—13 instars for the entire
nymphal stage. The number of periodic maxima
peaks greater than zero for the random number
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data varied from 6 to 41 as the number of size
classes was varied from 22 to 127 (Table 2B, Fig.
3). Decreasing the number of size classes also
resulted in a decrease in the number of peaks in
the frequency plots of the 16 instar, 5% COV
normal distribution simulation (Table 4). In the
published studies (Table 1) the predicted
number of periodic maxima peaks greater than
zero differed by an average of only 14% from the
number of actual peaks when the combined data
source regression equation was used (Table 1).

Some may argue that only ‘significant’ peaks
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FIG. 7. Dyar’s law plots from instars determined through frequency methods. A: dots, hypothetical mayfly
population with the same arithmetic progression factor between successive instars; open squares, hypothetical
mayfly population with the same geometric progression factor between successive instars; closed squares, plot of
the 16+ 19 instar mayfly subpopulations normal distribution simulation (see Fig. 6D). B: plot of a random number
simulated mayfly population with 127 size classes and N=500 (see Fig. 3C); closed dots, all periodic maxima peaks
greater than zero plotted as instars; open dots, only large peaks plotted as instars (previous closed dots were large
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(1967), open circles; all periodic maxima peaks greater than zero are indicated by the closed squares. D: plot of
periodic maxima peaks greater than zero of Fig. 1; open dots, exuviae; closed dots, whole nymphs. '
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should be chosen since they may be more likely
to indicate instars. However, the normal dis-
tribution simulations indicated that it is impossi-
ble to be certain that any peak indicates an
instar. An examination of Figs. 3B and C shows
that, ignoring very small peaks in both periodic
maxima—minima plots, increasing the number
of size classes from 64 to 127 results in almost
doubling the numiber of ‘significant’ peaks. Even
data from a caddisfly population (paper 9 of
Table 1), presumably with only five real instars,
showed a size class effect: periodic maxima peaks
numbered at least 10. Had these data come from
a mayfly or stonefly population, they would have
been interpreted as indicating at least 10 instars.
Newell & Minshall (1978) may have selected a
very low number of size classes for their head
width data with the result that only six ‘instars’
were determined (this value was viewed as
unrealistic by the authors). The effect of the
number of size classes can be overcome only by a
very homogeneously developing population.

Random number simulations were used in the
present study to show that random data
produces frequency and Dyar’s law plots which
are indistinguishable from those of real popula-
tions when size sampling bias is acknowledged
for real populations (compare Figs. 1-3 and 7).
Data from both real and random number
populations produced approximately evenly
spaced peaks (Figs. 1-3) which seemed to
indicate instars when actually these peaks were
the direct result of size class data partitioning.
Essentially, frequency instaf analysis of real and
random number mayfly of stonefly populations
is reduced to a size-t;fass effect, because a
reasonable number of instars can be produced
merely by selecting a certain number of size
classes. '

Dyar’s law, supplemental rearing and best-fit
analysis

Dyar’s (1890) ‘law’ or ‘rule’ is popularly
invoked to corroborate instars, including those
instars determined through frequency methods
(papers 1—4, 6 and 10 of Table 1). Unfortunate-
ly, Dyar’s law has been misunderstood by many.
Departures from Dyar’s law should be expected
to be commonplace since growth of many
animals through time is not constant (Simpson,
Roe & Lewontin, 1960), especially for many
mayflies and stoneflies whose relatively long

immature life extends over different seasons.
Thus for these insects a straight line (semi-
logarithmic) plot should not be expected (Fig.
7A). Fortunately, the usefulness of a Dyar’s law
plot in instar analysis depends not on the
straightness of the plot but rather on the
uniformity of spacing between ‘instar’ data
points; if a large gap between two data points is
found then it may indicate the presence of
additional instars. However, a Dyar’s law plot
does not confirm the existence of any of the
instars. Gaines & Campbell (1935) did not
recommend using Dyar’s law to corroborate
instars since it may indicate instars that do not
exist. A Dyar’s law plot (Fig. 7A) of the normal
distribution simulation (Fig. 6D) gave no
indication of the missing instars nor did it
indicate that an ‘instar’ data point actually was
the result of as many as two instars. A Dyar’s law
plot does not corroborate instars determined
through frequency methods because the uniform
spacing of Dyar’s law data points is the direct
result of the uniform spacing of peaks in
frequency plots of almost all data sources,
whether or not peaks indicate instars (Fig. 7).
Dyar’s law plots even ‘corroborated’ different
numbers of instars of the same frequency data,
when different peak selection criteria were used
in the frequency plots (Figs. 7B, C). Dyar’s law
plots from most frequency analyses would be
expected to show a uniform spacing of data
points that appear in shape to be somewhere
between the smooth curve of perfect arithmetic-
al intervals and the straight line of perfect
geometric intervals (Fig. 7A). A Dyar’s law plot
based on frequency data should not be used to
determine the general growth pattern of a
population (e.g. see Vaught & Stewart, 1974)
since the shape of the plot is determined by the
estimated instars which may not be instars at all.
Also it is generally meaningless to compare
mean progression factors for different species
since these factors are the direct result of the
number of instars and the total size range of the
species (Table 3).

Supplemental rearing has been cited by some
of the studies listed in Table 1 (papers 4, 5 and 8)
as additional support for their instar claims;
however, none of these studies presented any
data which would indicate the adequacy of their
rearing programme. Only a rigorous rearing
programme could verify or determine instars
and instar size variability on a population level,



which is exactly what investigators have sought
to avoid by using frequency methods.

Harding (1949) showed a way to lend
additional credence to the possible existence of
component groups in frequency distributions.
By trial and error, Harding chose appropriate
normal distributions for each supposed compo-
nent group and then formed a simple frequency
distribution that was compared to the original
simple frequency distribution through a chi-
square best-fit analysis. Those normal distribu-
tions which provided the best-fit were then
believed to offer the most likely solution. This
process has been automated by several iterative
computerized versions (e.g. Yong & Skillman,
1975; Brassard & Correia, 1977; Dahlberg,
1978) The Yong & Skillman (1975) method
generates polynomial equations. A polynomial
that provides the best-fit to the original simple
frequency distribution is chosen as the most
likely solution.

However, a good fit of the proposed distribu-
tion to the original distribution does not prove
the existence of component groups because as
Simpson et al. (1960, pp. 377-378) eloquently
expressed, the danger of fitting mathematical
functions to biological data ‘. .. lies in the
extraordinary power of a mathematical function
to fit observations. If enough parameters are
introduced into the equation of a curve, that
curve will, by suitable choice of parameter
values, fit any set of observations perfectly . . .
Thus, the establishment of a satisfactory mathe-
matical model should not be confused with an
elucidation of the underlying biological process.’
The specific problem in instar determination is
that a mathematical function or series of normal
distribution will certainly be found that matches
the frequency data very well, including the false
peaks.

The future of mayfly—stonefly instar analysis
Many questions remain unanswered in mayfly
and stonefly biology, and much of it concerns
just how these insects develop. Following
development through life-history diagrams and
morphological stages has given us a broad but
schematic picture, that only hints at the intrica-
cies and causes of development. Because
moulting is an integral process of development
in arthropods, correlating the amount or degree
of development per instar with environmental
factors will help us understand better how the
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environment affects these organisms. We need
to know why individuals may pass through
different numbers of instars or increase in size or
change in morphology at a rate significantly
different from other individuals and how impor-
tant environmental factors such as food, temper-
ature and photoperiod affect instar number and
development, and the eventual initiation of
adult tissue development. Few studies have
linked development with instars, and even fewer
studies have then correlated instar development
with environmental factors, as Cianciara (1979)
did so carefully. While a number of rearing
studies have provided important data on de-
velopment, too few specimens were usually
reared to determine accurately within popula-
tion variability, which must be known before
different populations under different conditions
can be compared. Paradoxically, the variability
of development and instar number that we wish
to study in mayflies and stoneflies is the very
reason that frequency methods cannot be used.
To continue to use frequency methods for instar
determination invites great confusion in the
literature due to the proliferation of inaccurate
and unsubstantiated results.

The primary alternative to frequency methods
is rearing, which ideally should involve the
rearing of a large number of specimens indi-
vidually from egg to adult. If rearing throughout
the life cycle is not possible then rearing of
individuals from one distinct morphological
stage or uniform size to another could yield
important results on the variability of the
number of moults and relative change per moult.
Indiscriminate resupplying of nymphs from
the field to replace dead specimens may not be
very useful, however, since it may be difficult to
compare the growth of nymphs that differ
initially. Rearing experiments could yield much
information on the interaction between develop-
ment, instars and environmental factors man-
ipulated experimentally. Obviously rearing is
not without detractions, these being the difficul-
ty of success and the time needed to monitor and
maintain rearings. However, it is doubtful that
most investigators use equipment expressly
designed to rear such small aquatic insects where
the conflicting needs of ease of observation and
simulation of important environmental needs
are sufficiently balanced to ensure routine
success.

The Palmen body method (Fink, 1980;
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Degrange, 1959) provides a potentially most
valuable alternative for determining instars of
mayflies. Whereas results from rearing may not
be representative of those in the field, the
Palmen body method can be utilized directly on
field and laboratory populations. Accurate
observations of the number of cuticular cylin-
ders (where each cylinder indicates an instar) for
some Heptageniidae and certain large mayflies
can be made from wholemount Palmen bodies,
while counts of the cylinders of most mayflies
must be made from thin sections (Fink, unpub-
lished data).

In summary, the future of understanding
development in mayflies and stoneflies, and
other arthropods which display some of the
characteristics discussed in this text, lies in the
use of the direct instar determination methods of
rearing and the Palmen body (mayflies only).
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