Freshwater Biology (1992) 28, 331-336

Sensitivity of mayfly nymphs to red light: implications

for behavioural ecology
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SUMMARY

1. Visual sensitivity of the mayflies Stenacron interpunctatum (Say) and Stenonema
vicarium (Walker) to red (650nm) and infra-red (950 nm) light was tested using a
behavioural assay. Nymphs were placed in a runway and sequentially exposed to green
light, red light, infra-red light and no light (control) at one end of the runway. The
distance run away from the light, and the number of alarm reactions to the light were

recorded.

2. Both species reacted strongly to both red and green light, running significantly greater
distances and reacting more frequently to these wavelengths of light than to either infra-

red light or the control.

3. These results show that unobtrusive observations of mayfly nocturnal behaviour
should be made using infra-red, and not red light, for illumination. Previous studies
of aquatic insect nocturnal behaviour may have produced biased results if red light

was used.

Introduction

Adult insects are generally insensitive to the red end
of the visible spectrum (Menzel, 1979), so red light
has often been used as illumination for nocturnal
ecological studies (e.g. Madsen, 1968; Corkum, 1978;
Kovalak, 1979). Use of red light in studies of aquatic
insects has continued despite suspicion of red sensi-
tivity (Allan, Flecker & McClintock, 1986; Rader &
Ward, 1990). If aquatic insects can see red, researchers
using red light may be getting spurious results.
Insect vision in stream habitats is important be-
cause light is the primary exogenous cue affecting
behaviour of many species (Wodsedalek, 1911;
Lyman, 1945; Harker, 1953; Elliott, 1968; Bishop,
1969; Kovalak, 1979; Bailey, 1981). Many aquatic
insects remain on the bottom of stones during the
day to reduce risk from visual fish predators (Allan,
1978), moving on to the top of stones only at dusk.
The vision of aquatic animals is affected by the
differential absorption of wavelengths of light by
water (McFarland, 1986; Lythgoe, 1988). Although
various fishes are known to have visual pigments
that maximize sensitivity to ambient environmental
light (Levine & MacNichol, 1979; Muntz & Mouat,
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1984; Heinermann & Ali, 1985), little is known of
the vision of immature aquatic insects. Although it
can be assumed that the vision of aquatic insects
is matched to their photic environment, which in
organically enriched freshwaters is shifted towards
the red (James & Birge, 1938; Schindler, 1971; Spence,
Campbell & Chrystal, 1971; Muntz & Mouat, 1984;
Howard-Williams & Vincent, 1985; Reimchen, 1989),
this idea has not been tested.

This is a report on a behavioural study of the
sensitivity of mayfly nymphs to red (650nm) and
infra-red (950nm) light, the results being discussed
in terms of experimental methodology and photic
adaptation. Nymphs of two species of heptageniid
mayflies were used as heptageniids are found
throughout North America, and are often among the
more abundant insects in streams in the eastern half
of the continent (Bednarik & McCafferty, 1979). They
are crepuscular or nocturnal in activity (Casey, 1987),
and live on the sides and bottoms of rocks. The
species used, Stenacron interpunctatum (Say) and
Stenonema vicarium (Walker), were ideal for a be-
havioural assay of spectral sensitivity because of
their strong negative phototaxis (Wodsedalek, 1911;
Lyman, 1945).
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Fig. 1 Diagrammatic representation of the apparatus showing the light path through the light source (LS), apertures (AP), lenses
(LE), variable attenuator (VA), and colour filter (CF) before it reached the experimental chamber (EC). The chamber contained a
door (DR) separating the waiting cell (WC) from the runway (RU). Dotted lines indicate the field of view of the video camera (VC).

legs towards the body in the ‘drift position’, a typical
alarm response by nymphs to disturbance, such as
being dislodged from the substrate. The total number
of reactions was considered to be the number of
animals that either ran from the light or assumed the
‘drift position’. To test for overall differences across
all wavelengths Cochran’s Q-test was used (Sokal
& Rohlf, 1981). To test for differences in reaction
between two wavelengths of light the McNemar test
was used for significance of change, with Williams’
correction (Sokal & Rohlf, 1981). For all statistical
tests the level used to accept significant differences
was P=<0.05.

Results

Both S. interpunctatum and S. vicarium reacted strongly
to both green and red light, running significantly
greater distances from these light sources than from
either infra-red, or the control (Fig. 2, Table 1). The
mean distance run in red light was slightly but not
significantly greater than that run in green for both
species (Fig. 2). There was also a significant effect of
red light for both S. interpunctatum (P = 0.0005) and
S. vicarium (P=0.025) when the total number of
reactions (‘drift position’ or run) was considered
(Table 2). Reactions to infra-red light were not sig-
nificantly different from the control. These results,
together with those on distance run, indicated that
nymphs of both mayfly species could detect and react
to red light, but not infra-red light.

Discussion

The use of red light as unobtrusive illumination
in studies of aquatic insect nocturnal behaviour
has been done without documented justification
(Madsen, 1968; Corkum, 1978; Allan & Feifarek, 1989;

Culp, Glozier & Scrimgeour, 1991), or with reference
to previous work reporting red insensitivity (Kovalak,
1979; Glozier & Culp, 1989). Red light has also been
used despite qualitative knowledge of red sensitivity
(Allan et al., 1986; Rader & Ward, 1990). A few studies
have measured red sensitivity indirectly (Elliott, 1968;
Bishop, 1969; Bailey, 1981; Casey, 1987), with am-
biguous results. Infra-red illumination has been used
to study aquatic insect nocturnal behaviour (e.g.
Sjostrom, 1985), as the only insects documented to

(@)

Distance run (cm)

Green Red

Infra-red Control

Fig. 2 Mean (+1SE) distance run by (a) Stenacron
interpunctatum and (b) Stenonema vicarium in response to light
of various wavelengths. Each individual nymph was used once
at each wavelength, with at least 24 h between trials.
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Source of variation df sS

Table 1 ANOVA table for distances run

S. interpunctatum

Light 3 117.0
(Green + red) v (infra-red + control) 1 114.8
Green v red 1 2.167
Infra-red v control 1 0.035
Error 92 779.5
Total 95 896.5
S. vicarium

Light 3 79.67
(Green + red) v (infra-red + control) 1 44.08
Green v red 1 34.85
Infra-red v control 1 0.738
Error 92 858.1
Total 95 937.8

F P by S. interpunctatum and S. vicarium
when exposed to green, red, infra-red
and no light (control). Treatment variance

. 4.600 <0.005 g partitioned into the three orthogonal

13.55 <0.001  .ontrasts

0.256 NS
0.004 NS
2.850 <0.05
4.726 <0.05
3.736 NS
0.079 NS

Table 2 Total number of reactions (‘drift position’ or run) of
Stenacron interpunctatum and Stenonema vicarium to various
wavelengths of light. Total number of trials was twenty-four
for each species. Overall differences between treatments
were significant for both S. interpunctatum (P < 0.05) and

for S. vicarium (P < 0.005)

Green Red Infra-red  Control
(550nm) (650nm) (950nm) (dark)
S. interpunctatum 18 21 7 5
S. vicarium 13 19 5 9

detect infra-red light are beetles that use extraocular
receptors (Meyer, 1977; Evans & Kuster, 1980).

Why then, were there discrepancies between the
results of this study and those of previous studies?
Earlier studies of the effect of red light on aquatic
insects have used indirect responses, such as sup-
pression of insect activity and changes in the density
of animals on the bottom of a stream (Elliott, 1968;
Bailey, 1981; Casey, 1987). Responses were observed
under conditions of dim white light, with and with-
out the addition of red light. Lack of a red-light effect
could have been due to the confounding effects of the
white background light. In another study often cited
as showing that insects cannot detect red (Bishop,
1969) the conclusions are questionable, as drift was
suppressed at high intensities of red light.

Individual variation among insects may also ac-
count for differences between studies. Both intra-
and interspecific differences occur in the sensitivity
of mayfly nymphs to visible light (Elliott, 1968). For
most aquatic insects the age of the animal may also

be important. The visual receptor peaks in dragonflies
change from nymph to adult (Ruck, 1965), as the
photic environment changes with the emergence
from the aquatic to the terrestrial environment.
Hemimetabolous insects such as mayflies do not
pupate, but undergo a rapid transition from aquatic
nymph to terrestrial adult. Any change in photic
pigments must therefore take place in the developing
nymph prior to emergence. It is logical to assume
that mayfly nymphs just about to emerge may have
spectral sensitivities very different from younger
ones. Age may account for some of the variability in
the results of this study, as nymphs of various ages
were used in this experiment (though none were in
the dark wing pad stage directly preceding emerg-
ence). Nevertheless, these results do show (based on
responses by mayflies) that future studies of noctur-
nal behaviour should use infra-red illumination, or
at least test quantitatively the insensitivity of the
study animal to red light.

In no studies where red light has been used have
both the exact wavelength and intensity of red light
used been reported. Thus, the ‘red’ lenses placed on
the front of flashlights in various studies may have
let through a small number of green photons in
addition to red ones. In my study the red band pass
filter cut off all light at 600 nm (=orange); therefore no
green photons would have been present. Researchers
exarmnining light responses in aquatic animals should
ideally express their light intensity in photons, as it
is the number of photons, not the power of each
photon, which is important for vision.



Visual sensitivity in the red end of the spectrum
seems to be rare in insects, and has been substan-
tiated only for some Lepidoptera (Bernard, 1979),
Diptera (Goldsmith & Fernandez, 1968), Odonata
(Meinertzhagen, Menzel & Kahle, 1983) and Hemiptera
(Schwind, Schiecht & Langer, 1984). However, all
insects shown to have such sensitivity have been
adults and none are benthic in streams. The sensi-
tivity of mayfly nymphs to the red end of the spectrum
may represent adaptation to ambient light conditions.
Water in many freshwater habitats contains short-
wavelength-absorbing organic compounds such as
tannins and lignins resulting from organic decompo-
sition (Levine & MacNichol, 1979; McFarland, 1986).
As a result, fresh waters can have transmission maxima
beyond 600 nm (James & Birge, 1938; Schindler, 1971;
Spence et al., 1971, Howard-Williams & Vincent,
1985; Muntz & Mouat, 1984). According to the sensi-
tivity hypothesis (Muntz & Mouat, 1984), visual pig-
ments of an animal should be adapted to the spectral
characteristics of ambient light in order to maximize
photon capture. To test this hypothesis spectral trans-
mission data from a wide range of aquatic habitats
are needed, as well as spectral sensitivity data for
a phylogenetically diverse assemblage of aquatic
insects. Red vision is probably far more widespread
in aquatic insects than is presently thought.
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