ARTIFICIAL SUBSTRATE SAMPLING, MACROINVERTEBRATES IN A POLLUTED REACH OF THE KLAMATH RIVER, OREGON

In 1964 the Federal Water Quality Administration (FWQA) initiated the Klamath Basin Study to determine the effects on water quality of agricultural wastes in irrigation return water on the Klamath and Lost rivers. As part of this study, macroinvertebrates were collected at monthly intervals to determine the effects of irrigation return water and pollution from the city of Klamath Falls on the aquatic life.

The advanced eutrophication of Upper Klamath Lake and the enrichment of Klamath River have been noted by several authors. Bonnell and Mote (1) reported the nuisance midge *Chironomus utahensis* attaining summer populations of 133,000/sq yd (111,000/sq m), and the alga *Aphanizomenon* forming mats with 20,000-000 filaments/cu m. Needham and Needham (2) cited the Klamath River at Hornbrook, Calif., as an example of enormous productivity, with 1 sq ft (0.0920 sq m) of stream bottom yielding 4,000 organisms and a standing crop of 5,000 lb/acre (5,600 kg/ha).

The abundance of aquatic life was attributed to an immense source of food (microscopic plankton).

Phinney and Peek (3) reported that algal blooms in Upper Klamath Lake have caused concern for at least 60 yr and that the discharge from the lake contained a heavy organic load, high in nitrogen. The great influx of humic water into the lake during late winter and early spring was suspected as a contributing factor to the high algal productivity.

Kreis and Johnson (4) presented an interpretation of Ekman dredge data obtained at three locations in the Klamath River near its junction with the Klamath Strait Drain. The authors concluded that there was a reduction of "pollution-intolerant" organisms immediately below the Klamath Strait Drain caused by agricultural wastes.

During 1965 and 1966, artificial substrates were installed at five locations in a 30-mile (48-km) reach of the Klamath River, Ore. The stream receives enriched water from the Klamath Lake and municipal and industrial wastes from the vicinity of Klamath Falls, Ore. (Figure 1).

Many different artificial substrate samplers have been devised to collect organisms that are not usually found on the natural bottom sediments. One important advantage of an artificial substrate sampler is that a relatively constant and uniform surface area is available to the organisms. Another advantage is that the samplers are
FIGURE 1.—Klamath River station locations.

Station Descriptions

Station K-1
(river mile 252, km 405.7)
At the junction of the Link River and Lake Ewauna, 1.0 mile (1.6 km) downstream from the Link River Dam; upstream from domestic and industrial waste discharge but subjected to enriched water from Upper Klamath Lake (Figure 2A).

Station K-2
(river mile 249.5, km 401.7)
0.5 mile (0.8 km) downstream from Lake Ewauna; subjected to domestic and industrial wastes including lumber processing and log storage, and tallow rendering wastes (Figure 2B).

Station K-3a
(river mile 239.6, km 385.8)
At the northwest side of the river, 12 miles (19.3 km) downstream from Klamath Falls; just upstream and on the opposite side from the Klamath Strait Drain.

Station K-3b
(river mile 239.5, km 385.6)
At the southeast side of the river 200 yd (183 m) downstream from the Klamath Strait Drain.

Station K-4
(river mile 221.5, km 357)
At the John C. Boyle Reservoir, 30 miles (48 km) downstream from Klamath Falls.

placed at a precise depth below the water's surface for a selected period of time. Scott (5) reported that artificial substrate samplers upstream and downstream from sources of pollution could be compared on a "quasi-quantitative" basis to determine changes in macroinvertebrate communities. The multiple plate sampler described by Hester and Dendy (6), or variations thereof, has found wide acceptance, especially for use in shallow streams. This sampler is easily made, lightweight, and has a known surface area. Besch and Hofmann (7) described the use of polyethylene plates (342 sq cm) floating just below the water's surface, for the collection of macroinvertebrates in a pollution study of the Steinauch River, near Heidelberg, Germany.

Wene and Wickliff (8) described the "basket method" in which wire baskets were filled with graded rock and placed on the stream bottom. They concluded that rubble substrate placed in a riffle was more productive than gravel for aquatic insects.

The rock-filled samplers used in this study provide an attractive habitat for a variety of organisms, as reported by
FIGURE 2A.—Aerial view (looking south) of Klamath Falls, Ore., and Lake Ewauna.

Anderson and Mason (9). Rocks provide crevices for larvae such as caddisflies and chironomids (midges). Spaces between the rocks harbor omnivores (gastropods and crayfish), predators (odonates and hemipterans), and scavengers (leeches and isopods). Algal growth on the rocks provides food for clinging mayflies, certain midge larvae, and other herbivores. Worms are usually prevalent in samples when sediment accumulates.

Description of the Study Area

The Klamath River originates from the eutrophic Upper Klamath Lake and flows 253 miles (407 km) through south central Oregon and northwestern California to the Pacific Ocean. The Upper Klamath Lake, impounded by the Link River Dam, is located on a semiarid plateau [elevation 4,100 ft (1,250 m)], and is approximately 35

FIGURE 2B.—Log storage 0.5 mile (0.8 km) downstream from Lake Ewauna, Station K-2.

FIGURE 3.—Basket sampler.

miles long (56 km), 5 miles (8 km) wide, and has a mean depth of 9 ft (2.7 m). Water from the lake flows swiftly 1 mile through the Link River channel to Lake Ewauna, which is merely a widened portion of the Klamath River, 2 miles (3.2 km) long and approximately 6 ft (1.8 m) deep. The city of Klamath Falls, Ore., is situated on the east bank of Lake Ewauna at the junction of the Link River. At its southern end, Lake Ewauna gradually narrows to form the Klamath River which is contained within a diked channel approximately 450 (137 m) wide and 8 ft (2.4 m) deep. Keno Dam is located 17 miles (27 m) downstream from Klamath Falls.

Irrigation return water from the Lost River system enters the Klamath River through the Klamath Strait Drain, 14 miles (23 km) downstream from the Link River Dam. From Lake Ewauna to Keno Dam, the river is maintained at a constant level throughout most of the year. Below the dam, the river is aerated by riffles as it descends 240 ft (73.1 m) in 5 miles

<table>
<thead>
<tr>
<th>TABLE I.—Average Daily Flow (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>July</td>
</tr>
<tr>
<td>August</td>
</tr>
<tr>
<td>September</td>
</tr>
<tr>
<td>October</td>
</tr>
</tbody>
</table>

Note: Cfs × 1.7 = cu m/min.
<table>
<thead>
<tr>
<th>Station K-1</th>
<th>1965</th>
<th></th>
<th>1966</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisms:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diptera (True flies)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae (Midges)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculative</td>
<td>2,288</td>
<td>430</td>
<td>262</td>
<td>248</td>
<td>980</td>
<td>5,576</td>
<td>2,108</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Pollution-associated</td>
<td>1,264</td>
<td>2,528</td>
<td>68</td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Diptera</td>
<td>4</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera (Caddisflies)</td>
<td>16</td>
<td>4</td>
<td>72</td>
<td>280</td>
<td>4</td>
<td>44</td>
<td>272</td>
<td>328</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera (Mayflies)</td>
<td>168</td>
<td>36</td>
<td>64</td>
<td>16</td>
<td>116</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata (Dragon and Damselflies)</td>
<td>80</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiptera (True bugs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera (Beetles)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidoptera (Aquatic moths)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipoda (Scud)</td>
<td>312</td>
<td>1,136</td>
<td>112</td>
<td>84</td>
<td>108</td>
<td>128</td>
<td>156</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Isopoda (Sowbugs)</td>
<td>112</td>
<td>32</td>
<td>12</td>
<td>32</td>
<td>8</td>
<td>12</td>
<td>92</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta (Worms)</td>
<td>3,000</td>
<td>640</td>
<td>932</td>
<td>64</td>
<td>64</td>
<td>180</td>
<td>1,072</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirudinea (Leeches)</td>
<td>16</td>
<td>72</td>
<td>4</td>
<td>44</td>
<td>8</td>
<td>12</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbellaria (Flatworms)</td>
<td>72</td>
<td>12</td>
<td>20</td>
<td>64</td>
<td>76</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelecypoda (Clams)</td>
<td>32</td>
<td>8</td>
<td>24</td>
<td>8</td>
<td>72</td>
<td>44</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda (Snails)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryozoa (Moss animals)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoenterata (Hydraz)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porifera (Sponges)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Individuals</td>
<td>7,120</td>
<td>5,098</td>
<td>570</td>
<td>1,844</td>
<td>1,236</td>
<td>5,928</td>
<td>3,072</td>
<td>1,864</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station K-2</th>
<th>1965</th>
<th></th>
<th>1966</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisms:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diptera (True flies)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae (Midges)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculative</td>
<td>1,079</td>
<td>36</td>
<td>80</td>
<td>288</td>
<td>272</td>
<td>5,416</td>
<td>1,674</td>
<td>956</td>
<td></td>
</tr>
<tr>
<td>Pollution-associated</td>
<td>574</td>
<td>988</td>
<td>360</td>
<td>1,196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Diptera</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera (Caddisflies)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera (Mayflies)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata (Dragon and Damselflies)</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiptera (True bugs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera (Beetles)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidoptera (Aquatic moths)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipoda (Scud)</td>
<td>32</td>
<td>12</td>
<td>32</td>
<td>28</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Isopoda (Sowbugs)</td>
<td>250</td>
<td>64</td>
<td>16</td>
<td>12</td>
<td>116</td>
<td>32</td>
<td>456</td>
<td>292</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta (Worms)</td>
<td>40</td>
<td>944</td>
<td>123</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirudinea (Leeches)</td>
<td>28</td>
<td>4</td>
<td>20</td>
<td>152</td>
<td>24</td>
<td>32</td>
<td>308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbellaria (Flatworms)</td>
<td>140</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelecypoda (Clams)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda (Snails)</td>
<td>68</td>
<td>12</td>
<td>65</td>
<td>48</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryozoa (Moss animals)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoenterata (Hydraz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porifera (Sponges)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Individuals</td>
<td>2,031</td>
<td>1,164</td>
<td>512</td>
<td>2,488</td>
<td>879</td>
<td>5,552</td>
<td>2,166</td>
<td>1,676</td>
<td></td>
</tr>
<tr>
<td>Station K-3a</td>
<td>1965</td>
<td>1966</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisms:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diptera (True flies)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae (Midges)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facultative</td>
<td>505</td>
<td>1</td>
<td>1</td>
<td>30</td>
<td>1,660</td>
<td>228</td>
<td>73</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Pollution-associated</td>
<td>330</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Diptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera (Caddisflies)</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>12</td>
<td>4</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera (Mayflies)</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odonata (Dragon and Damselflies)</td>
<td>20</td>
<td>20</td>
<td>17</td>
<td>104</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiptera (True bugs)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera (Beetles)</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidoptera (Aquatic moths)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipoda (Scud)</td>
<td>495</td>
<td>74</td>
<td>40</td>
<td></td>
<td>1,036</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Isopoda (Sowbugs)</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td>20</td>
<td>88</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta (Worms)</td>
<td>8</td>
<td>36</td>
<td>28</td>
<td></td>
<td>1,431</td>
<td>4,284</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hirudinea (Leeches)</td>
<td>576</td>
<td>58</td>
<td>1</td>
<td>16</td>
<td>524</td>
<td>320</td>
<td>255</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Tubbellaria (Flatworms)</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plecypoda (Clams)</td>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda (Snails)</td>
<td>28</td>
<td>21</td>
<td>25</td>
<td></td>
<td>600</td>
<td>12</td>
<td>45</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Bryozoa (Moss animals)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccoleterata (Hydras)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porida (Sponges)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Individuals</td>
<td>1,981</td>
<td>186</td>
<td>44</td>
<td>340</td>
<td>3,856</td>
<td>682</td>
<td>1,824</td>
<td>4,628</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Station K-3b</th>
<th>1966</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisms:</td>
<td></td>
</tr>
<tr>
<td>Diptera (True flies)</td>
<td></td>
</tr>
<tr>
<td>Chironomidae (Midges)</td>
<td></td>
</tr>
<tr>
<td>Facultative</td>
<td>577</td>
</tr>
<tr>
<td>Pollution-associated</td>
<td>173</td>
</tr>
<tr>
<td>Other Diptera</td>
<td>4</td>
</tr>
<tr>
<td>Trichoptera (Caddisflies)</td>
<td>8</td>
</tr>
<tr>
<td>Ephemeroptera (Mayflies)</td>
<td>68</td>
</tr>
<tr>
<td>Odonata (Dragon and Damselflies)</td>
<td>4</td>
</tr>
<tr>
<td>Hemiptera (True bugs)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera (Beetles)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera (Aquatic moths)</td>
<td></td>
</tr>
<tr>
<td>Amphipoda (Scud)</td>
<td>704</td>
</tr>
<tr>
<td>Isopoda (Sowbugs)</td>
<td>8</td>
</tr>
<tr>
<td>Oligochaeta (Worms)</td>
<td>240</td>
</tr>
<tr>
<td>Hirudinea (Leeches)</td>
<td>116</td>
</tr>
<tr>
<td>Tubbellaria (Flatworms)</td>
<td></td>
</tr>
<tr>
<td>Plecypoda (Clams)</td>
<td></td>
</tr>
<tr>
<td>Gastropoda (Snails)</td>
<td>36</td>
</tr>
<tr>
<td>Bryozoa (Moss animals)</td>
<td>X</td>
</tr>
<tr>
<td>Coccoleterata (Hydras)</td>
<td></td>
</tr>
<tr>
<td>Porida (Sponges)</td>
<td></td>
</tr>
<tr>
<td>Total Individuals</td>
<td>1,686</td>
</tr>
</tbody>
</table>
TABLE II—Continued

<table>
<thead>
<tr>
<th>Station K-4</th>
<th>1965</th>
<th>1966</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisms:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diptera (True flies)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomidae (Midges) Faculative</td>
<td>44</td>
<td>519</td>
</tr>
<tr>
<td>Pollution-associated</td>
<td>28</td>
<td>149</td>
</tr>
<tr>
<td>Other Diptera</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichoptera (Caddisflies)</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Ephemeroptera (Mayflies)</td>
<td>64</td>
<td>36</td>
</tr>
<tr>
<td>Odonata (Dragon and Damselflies)</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Hemiptera (True bugs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera (Beetles)</td>
<td>No Sample</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera (Aquatic moths)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Amphipoda (Scud)</td>
<td>73</td>
<td>24</td>
</tr>
<tr>
<td>Isopoda (Sowbugs)</td>
<td>73</td>
<td>24</td>
</tr>
<tr>
<td>Oligochaeta (Worms)</td>
<td>20</td>
<td>340</td>
</tr>
<tr>
<td>Hirudinea (Leeches)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Turbellaria (Flatworms)</td>
<td>73</td>
<td>24</td>
</tr>
<tr>
<td>Plecoypoda (Clams)</td>
<td>73</td>
<td>24</td>
</tr>
<tr>
<td>Gastropoda (Snails)</td>
<td>73</td>
<td>24</td>
</tr>
<tr>
<td>Bryozoa (Moss animals)</td>
<td>73</td>
<td>24</td>
</tr>
<tr>
<td>Coelenterata (Hydras)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Porifera (Sponges)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total Individuals</td>
<td>255</td>
<td>860</td>
</tr>
</tbody>
</table>

(8 km) into a 9-mile (14.5-km) long reservoir retained by the John C. Boyle Dam. Below the dam, the river cascades through canyons with a drop of 100 to 200 ft/mile (18.9 to 37.8 m/km) to the Pacific Ocean, which is approximately 235 miles (378 km) away.

Method and Materials

The prototype rock-filled sampler used for collecting macroinvertebrates during 1965 was cubical in shape, 8 in. (20.3 cm) on a side (10). The basket sampler (11) used in 1966 (Figure 3) was a chromium-plated, welded-wire, cylindrical barbeque* basket, 7 in. (17.8 cm) in diameter and 11 in. (27.9 cm) in length. The artificial substrates were filled with approximately thirty, 2- to 3-in. (5.1- to 7.6-cm) diam native rocks (andesite).

At each station samplers were suspended from a stationary structure on 0.125-in. (0.32-cm) wire cable, 18 to 48 in. (45.7 to 121.9 cm) below the water’s surface for 1 month. All the samplers were at least 8 in. (20.3 cm) above the bottom.

The collection procedure consisted of emptying the rocks into a tub partially filled with water. Each rock was cleaned with a stiff-bristled brush to remove the organisms. The samples were concentrated in a U. S. Standard Number 30 sieve and preserved in 70 percent ethanol or 7 percent formalin. The samples were processed at the FWQA’s Analytical Quality Control Laboratory in Cincinnati. In order to reduce processing time, aliquots of samples containing a large number of organisms were counted. The 1966 samples were not identified beyond family.

* Manufactured by Hewitt Home Products, National City, Calif. (Model RB-100 Tumble Basket). Mention of commercial sources or trade names does not constitute endorsement by the U. S. Department of the Interior.

Note: Hewitt Co. is out of business.
Substitute source: Androck Inc.
28 Union St., Worcester, Mass. 01608
Model 2911 Chicken Basket
Discussion

Physical factors that were relatively constant during the study included the sampler substrate type (andesite), period of exposure (1 month), and collection depth (not more than 48 in. (121.9 cm) or less than 18 in. (45.7 cm) below the water’s surface.

Variables influencing the stream environment included stream velocity, irrigation return water, and municipal and industrial wastes. Water temperatures varied slightly (15° to 20°C) in this reach of river from June to October. Average daily flows are shown in Table I. Water diverted from the Klamath River for irrigation purposes sometimes caused fluctuations in the flow at the downstream station (K-4).

The organisms collected were divided into two categories, pollution-associated and facultative. No strictly “clean water” organisms were collected during August, September, and October, 1965. Some of the taxa included in the pollution-associated category i.e. capable of withstanding extended periods of low DO and usually found in large numbers were: chironomids, Procladius sp. (12), Chironomus attenuatus (13), C. sp. 1 (1), C. sp. 2 and Glyptotendipes lobiferus (14); oligochaetes; pulmonate snails, Physa; and leeches, Helobdella stagnalis and Dina parva. These and other organisms considered pollution-associated are marked with an asterisk in Table III. The facultative category consists of less tolerant organisms not as abundant in water with low DO. Their presence and abundance increases in better oxygenated and enriched water. Some representatives were: chironomids, Orthocladiinae and Tanytarsini; caddisflies, Hydropsyche; mayflies, Caenis, Baetis; crustaceans, Asellus, Gammarus, and Halelela azteca; odonates, Argia and Aeshna; and gilled snails.

The two categories distinguished should not be considered rigid, because species within each major group may be found in waters with varying degrees of pollution. For example, not all species of oligochaetes and pulmonate snails are strictly limited to pollution environments. However, these broad categories serve to characterize degrees of pollution in a general way by the prevalence and distribution of certain taxa in a particular aquatic environment.

The number of macroinvertebrates collected in the Klamath River, Ore., during the summer of 1965 and 1966 ranged from a minimum of 44 collected in September 1965 at K-3a to a maximum of 7,120 collected in July 1965 at K-1 (Table II). Eighty-four taxa representing 15 orders were identified from samples collected each month at every station during 1965 (Table III). The most prevalent organisms in the samples during 1965 and 1966 were those which are found in marginal zones of pollution (15): chironomid larvae, oligochaetes, amphipods, isopods, odonates, leeches, and gastropods. The most common chironomids were Glyptotendipes spp., Chironomus spp. (plumosus group), Parachironomus abortivus, and Cricotopus spp. The amphipods Hyalella azteca and Gammarus, and the isopod Asellus were quite numerous. Helobdella stagnalis and Dina parva were the most abundant leeches. The mayfly Caenis, the snails Parapolyx spp., and the worms Nais and Stylaria were sporadic in abundance.

Caddisflies were restricted almost entirely to K-1. The number of midges collected during August and September 1966 was considerably greater than the number collected in 1965 during the same months. The occurrence of worms in the samples was irregular, and no stoneflies were present in any of the samples during the course of the study.

Miller and Tash (16) conducted a study of the nutrients and dry weights of phytoplankton in Klamath Lake in
<table>
<thead>
<tr>
<th>Organisms</th>
<th>Stations and River Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K-1, Klamath Falls (RM 252)</td>
</tr>
<tr>
<td>Diptera (True Flies)</td>
<td></td>
</tr>
<tr>
<td>Chironomidae (Midges)</td>
<td></td>
</tr>
<tr>
<td>Tanytunnidae</td>
<td></td>
</tr>
<tr>
<td>Ablabesmyia sp. Joh.</td>
<td>X</td>
</tr>
<tr>
<td>Procladius sp. Skuse</td>
<td></td>
</tr>
<tr>
<td>Orthocladiinae</td>
<td></td>
</tr>
<tr>
<td>Orthocladius sp. Wulp</td>
<td>X</td>
</tr>
<tr>
<td>Cricotopus sp. Wulp</td>
<td></td>
</tr>
<tr>
<td>C. triscatus Gr. (Panzer)</td>
<td></td>
</tr>
<tr>
<td>C. exilis Gr. Joh.</td>
<td></td>
</tr>
<tr>
<td>C. bicuspidus Gr. (Meigen)</td>
<td></td>
</tr>
<tr>
<td>Psectrocladius spp. Kiefer</td>
<td></td>
</tr>
<tr>
<td>Trichocladia sp. Kiefer</td>
<td></td>
</tr>
<tr>
<td>Cardiocladia obscurus (Joh.)</td>
<td></td>
</tr>
<tr>
<td>Cymatoneura scutellata Winnertz</td>
<td></td>
</tr>
<tr>
<td>Chironominae</td>
<td></td>
</tr>
<tr>
<td>*Chironomus attenuatus Walker</td>
<td>X</td>
</tr>
<tr>
<td>*C. sp. 1 (see note)</td>
<td></td>
</tr>
<tr>
<td>*C. sp. 2</td>
<td></td>
</tr>
<tr>
<td>Dicronotomus modestus Gr. Say</td>
<td>X</td>
</tr>
<tr>
<td>D. nr. famulus Joh.</td>
<td></td>
</tr>
<tr>
<td>D. incurvis Gr. Sublette</td>
<td></td>
</tr>
<tr>
<td>Parachironomus abortivus (Mall)</td>
<td></td>
</tr>
<tr>
<td>*Glyptotendipes lobiferus (Say)</td>
<td></td>
</tr>
<tr>
<td>*G. sp. 1</td>
<td>X</td>
</tr>
<tr>
<td>*G. sp. 2 (prob. barbipes)</td>
<td></td>
</tr>
<tr>
<td>Tanytarsus sp. Wulp</td>
<td>X</td>
</tr>
<tr>
<td>Cladotanytarsus sp. Kiefer</td>
<td></td>
</tr>
<tr>
<td>Caloptera sp. Kiefer</td>
<td>X</td>
</tr>
<tr>
<td>Stempellina (sp. A. Joh.)</td>
<td>X</td>
</tr>
<tr>
<td>Microptera sp. Kiefer</td>
<td>X</td>
</tr>
<tr>
<td>Ceratopogonidae (Biting Midges)</td>
<td></td>
</tr>
<tr>
<td>Palpomyia sp. Meigen</td>
<td></td>
</tr>
<tr>
<td>Bezzia sp. Kiefer</td>
<td></td>
</tr>
<tr>
<td>Simulidae (Blackflies)</td>
<td></td>
</tr>
<tr>
<td>Simulium sp. Latreille</td>
<td>X</td>
</tr>
<tr>
<td>Trichoptera (Caddisflies)</td>
<td></td>
</tr>
<tr>
<td>Hydropsychidae</td>
<td></td>
</tr>
<tr>
<td>Hydropsycha sp. Pictet</td>
<td>X</td>
</tr>
<tr>
<td>Psychomyiidae</td>
<td></td>
</tr>
<tr>
<td>Polycentropus cinereus Hagen</td>
<td></td>
</tr>
<tr>
<td>Leptoceridae</td>
<td></td>
</tr>
<tr>
<td>Mystacidea sp. Berthold</td>
<td>X</td>
</tr>
<tr>
<td>Limnephilidae</td>
<td></td>
</tr>
<tr>
<td>Limnephilus sp. Leach</td>
<td>X</td>
</tr>
<tr>
<td>Phryganeidae</td>
<td></td>
</tr>
<tr>
<td>Agrypnia sp. Hagen</td>
<td></td>
</tr>
<tr>
<td>Hydroptilidae</td>
<td></td>
</tr>
<tr>
<td>Agraylea sp. Curtis</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera (Mayflies)</td>
<td></td>
</tr>
<tr>
<td>Caenidae</td>
<td></td>
</tr>
<tr>
<td>Caenis sp. Stephens</td>
<td>X</td>
</tr>
<tr>
<td>Tricorythodes fallax Traver</td>
<td>X</td>
</tr>
<tr>
<td>Organisms</td>
<td>Stations and River Miles</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>K-1, Klamath Falls (RM 209)</td>
</tr>
<tr>
<td>Baetidae</td>
<td></td>
</tr>
<tr>
<td>Baetis sp. Leach</td>
<td>X</td>
</tr>
<tr>
<td>Calibaetis sp. Eaton</td>
<td>X</td>
</tr>
<tr>
<td>Ephemerella mollita Seemann</td>
<td>X</td>
</tr>
<tr>
<td>Odonata</td>
<td></td>
</tr>
<tr>
<td>Anisoptera (Dragonflies)</td>
<td></td>
</tr>
<tr>
<td>Aeshna sp. Fabricius</td>
<td>X</td>
</tr>
<tr>
<td>Anax sp. Leach</td>
<td></td>
</tr>
<tr>
<td>Zygoptera (Damselflies)</td>
<td></td>
</tr>
<tr>
<td>Ischnura sp. Charpentier</td>
<td>X</td>
</tr>
<tr>
<td>Enallagma sp. Charpentier</td>
<td>X</td>
</tr>
<tr>
<td>Argia sp. Rambur</td>
<td>X</td>
</tr>
<tr>
<td>Hemiptera (True bugs)</td>
<td></td>
</tr>
<tr>
<td>Corixidae</td>
<td></td>
</tr>
<tr>
<td>Corixella inscripta (Uhler)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera (Beetles)</td>
<td></td>
</tr>
<tr>
<td>Elmidae</td>
<td></td>
</tr>
<tr>
<td>Oxya pen LDean</td>
<td></td>
</tr>
<tr>
<td>Dytiscidae</td>
<td></td>
</tr>
<tr>
<td>Lacophilus sp. Leach</td>
<td></td>
</tr>
<tr>
<td>Halipidae</td>
<td></td>
</tr>
<tr>
<td>Hyallela sp. L.</td>
<td></td>
</tr>
<tr>
<td>Gymnacanthus sp. Fabricius</td>
<td></td>
</tr>
<tr>
<td>Isopoda (Sowbugs)</td>
<td></td>
</tr>
<tr>
<td>Asellus sp. Geoffrey</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera (Aquatic moths)</td>
<td></td>
</tr>
<tr>
<td>Parargyractis sp. Lange</td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
</tr>
<tr>
<td>Amphipoda (Scud)</td>
<td></td>
</tr>
<tr>
<td>Hyalella astrea (Saussure)</td>
<td></td>
</tr>
<tr>
<td>Gammarus sp. Fabricius</td>
<td></td>
</tr>
<tr>
<td>Isopoda (Sowbugs)</td>
<td></td>
</tr>
<tr>
<td>Asellus sp. Geoffrey</td>
<td></td>
</tr>
<tr>
<td>Oligochaeta (Worms)</td>
<td></td>
</tr>
<tr>
<td>Naididae</td>
<td></td>
</tr>
<tr>
<td>Nais sp. Müller</td>
<td></td>
</tr>
<tr>
<td>Stylaria lacustris (L.)</td>
<td></td>
</tr>
<tr>
<td>S. fossularis Leidy</td>
<td></td>
</tr>
<tr>
<td>Ophidonais serpentina (Müller)</td>
<td></td>
</tr>
<tr>
<td>Lumbriculidae</td>
<td></td>
</tr>
<tr>
<td>Tubificidae</td>
<td></td>
</tr>
<tr>
<td>Hirudinea (Leeches)</td>
<td></td>
</tr>
<tr>
<td>Glossiphonidae</td>
<td></td>
</tr>
<tr>
<td>Glossiphonina complanata (L.)</td>
<td></td>
</tr>
<tr>
<td>Helobdella stagnalis (L.)</td>
<td></td>
</tr>
<tr>
<td>Theomyzon sp. Philippip</td>
<td></td>
</tr>
<tr>
<td>Erpobdellidae</td>
<td></td>
</tr>
<tr>
<td>Erpobdella annulata (Moore)</td>
<td></td>
</tr>
<tr>
<td>Dina parva Moore</td>
<td></td>
</tr>
<tr>
<td>Moorobdella sp. Pawlowski</td>
<td></td>
</tr>
<tr>
<td>Piscicolidae</td>
<td></td>
</tr>
<tr>
<td>Pisciola gomotra (L.)</td>
<td>X</td>
</tr>
</tbody>
</table>
TABLE III.—Continued

<table>
<thead>
<tr>
<th>Organisms</th>
<th>K-1, Klamath Falls (RM 232)</th>
<th>K-2, Big K Mill (RM 249.5)</th>
<th>K-3a, Testers Landing-NW (RM 239)</th>
<th>K-3b, Testers Landing-SE (RM 239.5)</th>
<th>K-4, Boyle Dam (RM 221.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbellaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planariidae (Flatworms)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nematoda (Roundworms)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda (Snails)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Phyllidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physa sp. Draparnaud</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Planorbididae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helisoma sp. Swainson</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oyraulis sp. Charpentier</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraphylax sp. Hanna</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. klamathensis</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amnicolidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumatella sp. Stimpson</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Lymnaeidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymnaea (Stagnicola) sp. Jeffreys</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valvatidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valvata sp. Müller</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulimidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrgulopsis sp. ? Call and Pilsbry</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Lancididae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanx sp. Clessin</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Ancyliidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrissia sp. Walker</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelecypoda (Clams)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaeriidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaerium sp. Scopoli</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryozoa (Moss animals)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumatellidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumatella sp. Lamarek</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coelenterata (Hydras)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydra sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Taxa</td>
<td>50</td>
<td>44</td>
<td>45</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>Percent Pollution—Associated Taxa</td>
<td>30</td>
<td>48</td>
<td>40</td>
<td>39</td>
<td>28</td>
</tr>
</tbody>
</table>

*Pollution-associated

X = Present

Note: Chironomus sp. 1 is probably the species reported by Bonnell and Motte (1942) as utakensis (Personal communication with James E. Sublette, Eastern New Mexico University, Portales).

1965 and found lower dry weights at the end of August than in late July and September. All basket samples taken during September 1965 and 1966, except at Station K-4, showed a sharp decline in number of organisms as compared to those taken in August or October. This may have been due to less food, emergence of adult insects, and unfavorable current, in addition to pollutional effects.

Figure 4 shows that there was little variation in the number of taxa in the August 1965 collections. The number of organisms, however, varied considerably. Station K-3a consistently had fewer organisms than the other stations.

Figure 5 illustrates the total number of organisms and the percentages of pollution-associated and facultative organisms collected during August, September, and October 1965. Station
K-2 had the largest percentage of pollution-associated organisms during the combined 3-month period. Figure 6 illustrates the percent composition of pollution-associated and facultative organisms to the total sample during each month of the period illustrated in Figure 5. The percent of pollution-associated organisms at Station K-2 was consistently high, ranging from 75 to 90 percent. At the other stations, the composition of pol-
lution-associated organisms was more variable, ranging from a low of 12 percent to a high of 67 percent.

Station Summary

An exceptionally large number of organisms per sample (sometimes over 5,000) was collected at Station K-1. This abundance reflects the highly enriched, oxygenated water flowing from Upper Klamath Lake (Figure 5). This was the only station at which caddisflies appeared consistently during 1965 and 1966. Mayflies (mostly Caenis and Tricyrtothodes) were more numerous at this station, and the fauna was characterized by a large percentage of midges, oligochaetes, and amphipods (Table II). The caddisfly and mayfly populations occurring at Station K-1 are believed to be the result of ample current and DO.

The macroinvertebrate population in 1965 at Station K-2 was composed of 48% of pollution-associated taxa (Table III). Low stream velocity and log pond wastes undoubtedly accounted for the abundant midges. Few caddisflies or mayflies were collected at Station K-2 in 1965 and were entirely absent in 1966. Callibaetis was the only mayfly other than Caenis to be present at all stations. Callibaetis was reported by Gauvin and Tarzwell (17) to be occurring in a zone of moderate organic pollution during a study of Lytle Creek, Ohio. During August, September, and October 1965, over 4,000 organisms, were represented primarily by eight taxa, four of which were pollution-associated chironomids (Chironomus sp. 1, C. attenuatus, Glyptotendipes sp. 2, probably barbipes, and G. lobiferus). During this period, oligochaetes and bloodworms comprised 86 percent of the number collected.

Station K-3b was 200 yd (183 m) downstream and on the same side of the Klamath River as the Klamath Strait Drain discharge, whereas K-3a was on the opposite side of the river. The agricultural wastewater of the Klamath Strait Drain transports considerable amounts of organic material and silt from the Lost River system. However, the silt settles rapidly on entering the Klamath River.

The 1965 macroinvertebrate data for Stations K-3a and K-3b (Figures 5 and 6) show a large reduction in number of individuals and a decrease in the percentage of pollution-associated organisms as compared with Station K-2. The baskets contained fewer midges, pulmonate snails, and worms. Thirty-six taxa were collected at K-3b compared with 45 at K-3a, but the percentage of pollution-associated taxa was nearly the same at both stations.
TABLE IV.—Temperature, Dissolved Oxygen, and pH Recorded 9:30 AM, August 17, 1966

<table>
<thead>
<tr>
<th>Location</th>
<th>Water Temperature (°C)</th>
<th>Dissolved Oxygen (mg/l)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Surface</td>
<td>Bottom</td>
</tr>
<tr>
<td>Above K-1 (Fremont Bridge)</td>
<td>18.9</td>
<td>8.1</td>
<td>7.6</td>
</tr>
<tr>
<td>K-1</td>
<td>22.2</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Below K-1 (downstream end of Lake Ewauna)</td>
<td>22.2</td>
<td>3.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Above K-2</td>
<td>21.1</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>K-2</td>
<td>22.2</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Below K-2</td>
<td>23.3</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Above K-3a and K-3b</td>
<td>22.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>K-3a</td>
<td>22.8</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>K-3b</td>
<td>22.2</td>
<td>1.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Keno, Ore. (between K-3a and K-4)</td>
<td>—</td>
<td>3.2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

(Table III). The smaller diversity of mayflies and beetles at K-3b may have been result in part of turbid water coming from the Klamath Strait Drain. The percent composition of facultative and pollution-associated macroinvertebrates at Station K-4 remained about the same as at Stations K-3a and K-3b during August, September, and October 1965, and the number of individuals at K-4 was slightly greater. DO measurements the first week in August 1966 near Stations K-2, K-3a, and K-3b showed concentrations less than 2.0 mg/l. During mid-August, a large fish kill occurred in the vicinity of Stations K-3a and K-3b. A more detailed survey of the water chemistry was conducted the week following the fish kill in the reach of river between the Link River Dam (above Station K-1) and Keno, Ore. (between Stations K-3a and K-4). Temperature, DO near the surface and bottom, and pH for August 17 are presented in Table IV. The DO concentrations near the bottom decreased from 8.2 mg/l at Station K-1 to nondetectable amounts in the vicinity of Station K-2. There was slight improvement in DO at Stations K-3a, K-3b, and at Keno which permitted the survival of only pollution-tolerant species. Station K-4, located in the reservoir formed by the John C. Boyle Dam, received aerated water from an upstream riffle that generally resulted in higher DO concentrations.

The survey also revealed that the water was very basic (pH 9.7) at Station K-1 and became progressively less basic downstream. The chemical measurements before and after the fish kill indicated that conditions associated with organic pollution existed approximately 3 wk.

The combined factors of organic wastes, low DO, and stream flow in 1966 reduced or eliminated many macroinvertebrate taxa at Stations K-3a and K-3b including caddisflies, mayflies, and coleopterates. At K-3b, 1,158 midge larvae were collected in August, 13 in September, and none were present in October. The presence of only four taxa and the complete absence of midges in the October sample were in contrast to the greater diversity in 1965 (Table II). During 1966, the number of worms in the samples increased dramatically.

Macroinvertebrates adapted to quiescent water inhabited the baskets at station K-4. Inspection of Table III reveals that some midge larvae were: Corynoneura, Dictyotendipes incurvus gr., Tanytarsus, and Cladotanytarsus. Caddisfly larvae were not collected at Station K-4 throughout the study probably as a result of little current in the reservoir. The only leech collected was Helobdella stagnalis whereas four to five species were collected at the other stations.
Acknowledgments

E. B. Henson, formerly of the Federal Water Quality Administration, Cincinnati, and presently Associate Professor of Zoology, University of Vermont, Burlington, cooperatively began this study with the Klamath Basin Study personnel. The comments and suggestions of Cornelius I. Weber, Chief, Biological Methods, Analytical Quality Control Laboratory, Division of Water Quality Research, FWQA, are appreciated. Other FWQA biologists who assisted in collection or identification of the samples include Stephen L. Bugbee, Philip A. Lewis, George E. Morrison, and Donald G. Stevens. Leonard H. Larsen, Geology Department, University of Cincinnati, identified the rock used in the baskets.

The authors thank the following taxonomists for their assistance in the identification of macroinvertebrates: Oliver S. Flint (caddisflies), B. D. Burks (mayflies), and Joseph P. E. Morrison (mollusks), all of the National Smithsonian Institution, Washington, D. C.; James E. Sublette, Dean, Graduate School, Eastern New Mexico University, Portales, and LaVerne L. Curry Department of Biology, Central Michigan University, Mt. Pleasant (midges); C. K. Mathers, Department of Biology, Northern Illinois University, DeKalb (leeches).

References