Pseudokageronia thomasi gen. nov., sp. nov. from the Upper Miocene of Murat (France) [Ephemeroptera : Heptageniidae]

by Gérard MASSELOT & André NEL*

Laboratoire d’Entomologie, Muséum National d’Histoire Naturelle, 45, rue Buffon, F-75005 Paris
e-mail: gm@invfm.org and anel@mnhn.fr
* adresse de correspondance

Keywords : Ephemeroptera, Heptageniidae, *Pseudokageronia thomasi* gen. sp. nov., fossil, Upper Miocene, France, phylogeny, palaeoecology.

We describe a new fossil heptageniid genus and species *Pseudokageronia thomasi* (Upper Miocene, France). It is considered as the sister genus of the Recent group [*Dacnogenia* + (*Heptagenia* + [*Afronurus* + (*Ecdyonurus* + *Electrogena*)])]. The palaeoecological implications of the presence of this Heptageniidae in a diatom palaeolake are discussed.

Nouvel Heptageniidae de l’Eocene supérieur de Murat (France) : Pseudokageronia thomasi gen. nov., sp. nov. [Ephemeroptera : Heptageniidae]

Mots clés : Ephemeroptera, Heptageniidae, *Pseudokageronia thomasi* gen. sp. nov., fossile, Miocène supérieur, France, phylogénie, paléoécologie.

1. Introduction

The only known fossil Heptageniidae larvae are *Miocoenogoria gorbunovi* TSHERNOVA, 1962 (Oligocene, West Siberia, Russia), *Heptagenia* sp. from the Upper Miocene (Shanwang, Shandong Province, China, ZHANG, 1989), *Succinogenia larssonii* DEMOU LIN, 1965 from the Upper Eocene (Baltic amber), and an Heptageniidae gen. et sp. undetermined (Eocene, Klondike Mountain Formation, Republic, Washington State, U.S.A., LEWIS, 1992). The systematic position of *Heptagenia shanwangensis* (HONG, 1983) (Upper Miocene, Shanwang, Shandong Province, China) is rather uncertain. After the original photography of the holotype by HONG (1983), this larva looks like an Ephemerellidae, rather than a Heptageniidae, because of its legs with non-broadened femora. A direct revision of the holotype is necessary to have an accurate familial attribution of this species.

Seven larvae of Heptageniidae (with the body distinctly depressed, the prognathous head, and the eyes and antennae dorsal), one of them being very well preserved (specimen MNHN-LP-R.
55196, figure 1, photo 1), have been collected from diatom deposits in a Late Miocene paleolake near Murat (Massif Central, France). These fossils belong to a new genus and species of a great interest for the knowledge of the palaeoecology and palaeobiodiversity of this family.

The outcrop of Faufouilloux near Murat is a lacustrine diatom bed (maar) dated from the Uppermost Miocene (-5.3 ± 0.3 M.y., ROIRON, 1991). The insect fauna is very rich and diverse and has affinities both with the Palaeartic and Afrotropical Recent faunas (NEL, 1988, 1992, 1996; NEL & PAICHALER, 1993; NEL, ARILLO & MARTINEZ-DELCLIS, 1996, NEL & JARZEMBSKI, 1997; MARTINEZ-DELCLIS, PAPE & OUDARD, 1997; NEL, ARILLO & ORTUÑO, 1997). Unlike ROIRON (1991), the aquatic entomofauna is highly diversified, with many Odonata and Ephemeroptera larvae, Megaloptera Sialidae, Heteroptera Notonectidae, Corixidae and Naucoridae.

2. Systematic palaeontology

Family Heptageniidae Needham (in Needham & Betten, 1901)

Pseudokageronia gen. nov.

Etymology

After pseudo and the Recent genus *Kageronia*.

Type species

Pseudokageronia thomasi sp. nov.

Diagnosis

Larvae: head more or less quadrangular, eye in a postero-dorsal position, posterior margin of the head with a small but distinct median concavity (notch). Lateral margins of the pronotum regularly rounded without latero-posterior expansions. Inner margins of the wingbuds not fused together. Presence of long setae on the distal 2/3 of the hind margin of the femora, the anterior margin being glabrous. Pointed phanerae, not densely disposed on the upper surface of the femora. Tibia glabrous and without phanera, nearly as long as the femora. Tarsi as long as half of the tibias. Posterior margin of the abdominal segments bearing sharp teethes, all similar. Two cerci and a paracercus, without setae. Gills not preserved.

Adults and eggs: unknown.

Pseudokageronia thomasi sp. nov.

Material

Holotype specimen MNHN-LP-R. 55196, a larvae (gut visible). Paratypes specimens MNHN-LP-R. 55197, 55198 and 55199 (exuvial skins). Three more exuvial skins have been recently discovered. Deposited in the Laboratoire de Paléontologie, Muséum National d'Histoire Naturelle, Paris.

Etymology

After Dr. Alain Thomas, Université Paul Sabatier, Toulouse, a great ephemeropterologist, and a friend.

Stratum typicum and locus typicus. Uppermost Miocene, -5.3 M.y., outcrop Les Faufouilloux, Sainte-Reine, near Murat, alt. 1100 m.

Description

Larvae:

Dimensions: width of head capsule 2.2 mm, length 1.4 mm, more or less quadrangular, eye in a postero-dorsal position, antenna not conserved. Pronotum width 1.8 mm, length 0.8 mm, lateral
Figure 1. — Habitus holotype specimen MNHN-LP-R. 55196
margins regularly rounded, without expansions. Wing-buds: length 1.4 mm, internal margin non-fused together. Gills not conserved. Length of femora: fore 1.6 mm, middle 1.8 mm, hind 2.0 mm. Widths 0.7 mm, 0.8 mm and 0.7 respectively. Long setae along the distal 2/3 of hind margin of femora, fore margin glabrous (photo 2). Pointed phanerae not densely disposed on the upper surface of the femora (photo 3). Tibias length 1.4 mm. Fore and middle tarsus 0.6 mm long. Abdominal segments bearing sharp teeth, all similar (photo 4). Ceri and terminal filament not preserved on holotype (figure 1), 2 cerci and a terminal filament, without any setae on paratypes.

3. Discussion

Pseudokageronia gen. nov. has three caudal filaments. So, are excluded the genera _Acanthomola_ WHITING & LEHMKYHL, 1887, _Epeorus_ EATON, 1881, _Iron_ EATON, 1883 (treated both as synonym and subgenus of _Epeorus_), _Ironodes_ TRAVER, 1935, _Ironopsis_ TRAVERS, 1935, _Belovius_ TŠHERNOVA, 1981, genera described on the sole basis of the adults, and closely related to _Epeorus_. _Pseudokageronia_ has no pronotal processes. Because of this character, are excluded _Miocoenogia_ TŠHERNOVA, 1962 (Neogene of Siberia) which has latero-anterior pronotal processes, _Stenacron_ JENSEN, 1974 (having lateral expansions of the pronotum), _Ecdyonurus_ EATON, 1868 (having postero-lateral expansions of the pronotum). The absence of lateral expansions on the abdominal segments of _Pseudokageronia_ excludes _Compsoneuria_ EATON 1881 (= _Notonomus_ CRASS, 1947, see GILLIES, 1984; = _Compsoneurilla_ ULMER, 1939). The frontal margin of the head capsule of _Cinegymula_ McDUNNOUGH, 1933 is emarginate along the median area, unlike _Pseudokageronia_. The head of _Cinegyma_ is 1.25 times as wide as long, unlike _Pseudokageronia_ (1.6 times as wide as long). _Pseudokageronia_ differs from _Stenacron_ JENSEN, 1974 in having no spine on the femora but rather dense setae and no lateral expansions of the pronotum. The femora of _Pseudokageronia_ bear a series of relatively short setae (less than half width of the femora) along the hindmargin. These setae are absent in the proximal part of the margin but they increase in length distally. After KLUGE (1988), this character excludes the genera _Ecdyonurus_, _Cinegyma_, _Rhithrogena_, and _Epeorus_. _Bleptus_ EATON, 1885 is also excluded because it has short strong setae but no long setae on posterodorsal margin, unlike _Pseudokageronia_ (UENO, 1931; KLUGE, 1988). The pronotum and the head capsule of _Stenonema_ are emarginate on the posterior margin, unlike _Pseudokageronia_. Unlike the larvae of _Atopus_ EATON, 1881, which has ‘femora, tibiae, and tarsi with row of long setae along posterior margin, surface of femora with scattered spatulate setae’ (WANG & MACCAFFERTY, 1995). _Pseudokageronia_ possesses long setae on 2/3 of femora, and the phanerae on the surface of femora are sharp, not spatulate. _Pseudokageronia_ differs from _Macclunnoa_ LEHMKUHL, 1979 in the absence of spine on its femora and tibia, unlike the latter, which has spines of two kinds and marginal fine hairs on the femora. _Raptoheptagenia_ WHITING & LEHMKUHL, 1987 has a dense setation on the dorsum of the abdomen, unlike _Pseudokageronia_. _Succinogenia_ DEMOULIN, 1965 has distinctly narrower femora than the new _Pseudokageronia_.

Within _Heptagenia_ (sensu KLUGE, 1988), the absence of setae in the proximal part of the hind margin of the femora would exclude all subgenera, except _Kageronia_ MATSUMURA, 1931 described on the basis of adults. Nevertheless, MATSUMURA (1933) synonymised the type species _Kageronia_ suzukiella with _Heptagenia_ kihada two years after he created the genus _Kageronia_. After OMANISHI (1935), the larvae of _Heptagenia_ kihada, has ‘tibia slightly shorter than the femur, tarsus about one-third of the tibia (...) each of the tergites 1-9 with a spine on its postero-lateral corner’. _Pseudokageronia_ has no spine on the postero-lateral corner.

The genus _Afromonurus_ LESTAGE, 1924 is discussed by BELFIORE (1994, 1996) for European species, who considers that KLUGE (1988) has too rapidly synonymised the genera having ‘triangular gills’ with _Ecdyonurus_, underestimating the morphological characters of larvae. _Afromonurus_ has
Photo 1. — Habitus holotype.

Photo 2. — Fore femora.
Photo 3. — Phanerae on fore femora.

Photo 4. — Spines on hind margin of tergites.
long setae on the whole posterior margin of the femora and the setae on the surface of femora are not sharp, unlike in *Pseudokageronia*.

None of the characters used by Zurwerra & Tomka (1985) for the original description of *Electrogena* are preserved in *Pseudokageronia*. Thus, the comparison between the two taxa is based on the following characters: *Electrogena* bears setae on the whole length of the hind margin of the femora, mainly the median and posterior, these setae being shorter on the fore femora, unlike in *Pseudokageronia*. Posterior femora of *Electrogena* are more pilose than others.

Lastly, the Upper Miocene larva attributed to *Ecdyonurus* by Zhang (1989) has a distinctly transverse head, unlike *Pseudokageronia*. The fossil larvae attributed to *Heptagenia* by Zhang (1989) have distinctly narrower femora than *Pseudokageronia*.

4. Phylogenetic analysis

Sainte-Reine is a relatively recent outcrop, with an entomofauna related to the recent faunas of the Palaeartic and Afrotropical regions. Furthermore, the Heptageniidae are supposed to be a rather modern family (Kluge, 1993), thus it is highly probable that *Pseudokageronia* is more closely related to the recent genera from the Western Palaeartic region: *Afromurus, Ecdyonurus, Electrogena, Heptagenia*, and *Kageronia*. Macafferty (1991b) has shown that the Oligoneuriidae is the sister-group of Heptageniidae. Thus, we have tried to make a phylogenetic analysis of these genera.

The genus *Oligoneuriella* Ulmer, 1924, is considered as outgroup for the present attempt of cladistic analysis. The software Hennig86 version 1.5 (Farris, 1988) with the help of the matrix and tree editor Tree Gardener version 2.2.1 (Ramos, 1998) have been used, with the implicit enumeration option ('i.e'), without any weighting of characters. 16 characters are used, 12 being both visible in *Pseudokageronia* and on the type species of Recent genera. The last four characters are coded ‘?’ for *Pseudokageronia*. Nevertheless, the recent genera are mainly characterised on the basis of the mouthparts and gills structures, not visible in *Pseudokageronia*. In order to minimise the number of undetermined states of characters in *Pseudokageronia*, we have chosen to introduce only the characters most discriminant for the other genera. Neither *Rhithrogena* nor *Epeorus* have been integrated in the study because: 1) the problem we want to solve concerns the subgenera of *Heptagenia* (Dacnogenia, Kageronia, and Heptagenia sensu stricto), *Ecdyonurus* (Electrogena, Afromurus, and Ecdyonurus sensu stricto), and the position of the new genus *Pseudokageronia*; 2) *Epeorus* and *Rhithrogena* are strictly rheophilous genera, while *Heptagenia* and *Ecdyonurus* sensu lato are found indifferently in lentic (even in standing waters) or lotic environments; 3) the characters necessary to the integration of *Epeorus* and *Rhithrogena* in the analysis would have concerned the mouthparts and gills, not visible in the fossil. Thus, this option would have introduced too numerous biases in the analysis.

Only one minimal tree was obtained (length 30; CI 0.60; RI 0.58) showing:

1) a monophyletic group ([Ecdyonurus+Electrogena]+ Afromurus. If *Electrogena* (raised to genera rank for several *Ecdyonurus* species by Zurwerra & Tomka, 1985) is without any doubt a genus, the occurrence of *Afromurus* in West-palaeartic region remains doubtful (see Belfiore, 1994, 1996). It is highly probable that *Afromurus zebra* from Corsica should be retransferred to *Electrogena*.

2) another monophyletic group, (((Ecdyonurus+Electrogena]+ Afromurus) + Heptagenia) + Dacnogenia. Dacnogenia appears as a valid genus, more basal than *Heptagenia*, after the present analysis. This result will need confirmation after a future analysis including imaginal characters.
<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Head capsule</td>
<td>Width equal or larger than 1.5 time its length 0, Width less than 1.5 time its length 1</td>
</tr>
<tr>
<td>2</td>
<td>Pronotum</td>
<td>Without lateral expansions 0, With lateral expansions 1</td>
</tr>
<tr>
<td>3</td>
<td>Pronotum</td>
<td>Width of fore margin inferior or equal to width of hind margin 0, Width of fore margin superior to width of hind margin 1</td>
</tr>
<tr>
<td>4</td>
<td>Fore tarsus</td>
<td>Presence of setae on the hind margin 0, Absence of setae on the hind margin 1</td>
</tr>
<tr>
<td>5</td>
<td>Fore femora</td>
<td>Width less or equal to 0.4 length 0, Width superior to 0.4 length 1</td>
</tr>
<tr>
<td>6</td>
<td>Fore femora</td>
<td>Length inferior or equal to length of tibia 0, Length superior to length of tibia 1</td>
</tr>
<tr>
<td>7</td>
<td>Fore femora</td>
<td>Setae on only a part of hind margin 0, Setae all along hind margin 1</td>
</tr>
<tr>
<td>8</td>
<td>Fore femora</td>
<td>Numerous phanerae on dorsal side 0, No, or few phanerae on dorsal side 1</td>
</tr>
<tr>
<td>9</td>
<td>Shape of phanerae on femora</td>
<td>Sharpened 0, Other shapes, or no phanerae 1</td>
</tr>
<tr>
<td>10</td>
<td>Length of fore tarsus</td>
<td>Equal or inferior to ¼ of the length of tibia 0, Between ¼ to ½ of the length of tibia 1</td>
</tr>
<tr>
<td>11</td>
<td>Hind corners on posterior abdominal segments</td>
<td>Sharp 0, Blunt 1</td>
</tr>
<tr>
<td>12</td>
<td>Tergites</td>
<td>No spines on posterior margin 0, Presence of spines, of only one size 1, Presence of spines of several sizes 2</td>
</tr>
<tr>
<td>13</td>
<td>Shape of glossae</td>
<td>Elongated 0, Square 1, Pyramidal 2</td>
</tr>
<tr>
<td>14</td>
<td>7th gill</td>
<td>Always with a filamentous tuff 0, Generally without filamentous tuff 1</td>
</tr>
<tr>
<td>15</td>
<td>Small denticles on claws</td>
<td>Yes 0, No 1</td>
</tr>
<tr>
<td>16</td>
<td>Galea and lacinia</td>
<td>With a row of setae on the ventral side 0, Other 1</td>
</tr>
</tbody>
</table>

Table 1. — List of characters.
Tableau 1. — Liste des caractères.
Figure 2. — Minimal tree (Length : 30; CI : 0.60; RI : 0.57).
Figure 2. — Arbre minimal (Longueur : 30; IC : 0.60; IR : 0.57).

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligoneuriella</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Afronurus</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ecdyonurus</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Electrogena</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Heptagenia</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Kageronia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>?</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>?</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pseudokageronia</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Dacnogenia</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2. — Matrix of characters.
Tableau 2. — Matrice de caractères.
3) The basal position of *Pseudokageronia* and *Kageronia* confirms the results of KLUGE (1993) who said that *Kageronia* might be considered as the most primitive 'group' among the Recent Hep- tageniinae. Further, together with the presence of an adult attributed to this genus in the Upper Eocene Baltic amber (KLUGE, 1986), it supports the hypothesis of a Palaeartic origin for *Kageronia*. As for *Dacnogenia*, and according to JACOB et al. (1995), we propose to raise *Kageronia* as a genus.

5. Ecological and ethological remarks

The phylogenetic affinities between *Pseudokageronia* and *Kageronia* are supported by ecological data. *Kageronia fuscogrisea* is known to live exclusively in the aquatic vegetation and is never found on the stones or gravel (MADSEN, 1968). MACAN (1960) has reported this species from two Recent lakes. A comparison of morphological features of *Heptagenia sulphurea* and *Kageronia fuscogrisea* shows that the presence of a dense fringe of hairs along the hind edge of the femora is an adaptation to lotic habitats (MADSEN, 1968). *Kageronia fuscogrisea* has not such a dense fringe. Nevertheless, *K. fuscogrisea* has a dense fringe of hairs along the hind edge of the tibia, interpreted by MADSEN (1968) as an adaptation to swimming. *Pseudokageronia* has not such a fringe of hairs.

The presence of fossilised exuvial skins suggests that emergence occurred beneath or upon the surface of water, as in Recent Baetidae, and not climbing on macrophytes or stones, as *Ecdyonurus dispar*, for example.

The paleolake of Faoufouilloux, near Murat was a very peculiar environment: lack of large stones, or pebbles, or even gravel in the layers where the Ephemeroptera larvae have been found (laminated beds of fine diatomite, green diatom mud, near the base of the series, corresponding to a palustrine palaeoenvironment). In the standing water, the aquatic macrophyte Ceratophyllaceae *Ceratophyllum demersum* L. was present (ROIRON, 1991). This species is typical of standing waters, where it can proliferate. Numerous species of diatoms have been studied of SERIEYSSOL & GASSE (1991) who show that the diatom flora is constituted of 90-95% by pennate diatoms, of poor chronological value, and centric diatoms (Cyclotella kutzingiana, *C. meneghiniana*, *Stephanodiscus dispar* for example). ROIRON (1991) thinks that salinity of water and gas releases excluded all animal life, because these diatom species are found in brackish water. GERMAIN (1981) says that *Cyclotella meneghiniana* is very frequent on macrophytes, among littoral deposits. It seems to tolerate salinity as much as 10%. DESCY (1984) shows that *C. meneghiniana* tolerates temperature variations between 2.1 to 26.0°C; O₂ from 1.2 to 13.7 mg/L; pH from 6.2 to 10; Sulphates from 5.5 to 160 mg/L; Sodium from 2.0 to 159 mg/L. GALLIK (1932) mentions the presence of *Stephanodiscus* in Hungarian sulphur thermae and HUBER-PESTALOZZI (1942) writes it occurs in oligotrophic Alpine lakes. For SLADECEK (1956), this species would be a α-β mesosaprobe. The very large spectrum of tolerance of these diatoms to various chemical conditions does not allow asserting anything about the quality of the water where *Pseudokageronia thomasi* lived. Yet, it is highly probable it fed on this microflora. ROIRON (1991) writes that the climate was probably temperate or cold with relatively temperate winters. This assumption, based on the low abundance of thermophilous macroflora, and the greater abundance of alleged temperate or cold floristic elements, is to be compared with the presence of a diverse Isoptera fauna (NEL & PAICHELER, 1993) and Odonata Megapodagrionidae (NEL et al., 1997), which occur in Recent hot and wet climates.

ROIRON (1991) quoted that FOURNIE (1965) and MAURIZOT-BLANC (1974) have observed fluvialite deposits in the series of Sainte-Reine. A hypothesis could be that *Kageronia*, initially occurred in the streams. It colonised the nearby lake, with adaptations (*Pseudokageronia*) to its special ecological conditions. *Pseudokageronia* extincted as this special environment disappeared. There is no more maar, with secondary volcanic activity in the Massif Central (France).
References

KLUGE, N. Yu. 1986. [Contributions to the knowledge of mayfly species (Ephemeroptera, Heptageniidae) from Baltic amber]. Paleontologicheskii Zhurnal, 1986 (2) : 111-112.

