HIGHER CLASSIFICATION OF THE BURROWING MAYFLIES (EPHEMEROPTERA: SCAPPHODONTA)1

W. P. McCafferty2

ABSTRACT: A revised cladogram of the monophyletic groups of genera constituting the tusked burrowing mayflies (infraorder Scaphphodonta) is presented, based in part on new analyses of relationships that have recently appeared in the literature. A new strict phylogenetic higher classification of Scaphphodonta that incorporates both extant and extinct taxa and that reflects the revised cladogram is presented. Aspects include the new superfamilies Potamanthoidea (Potamanthidae and Australiphemeroidea) and Euthyplocioidae (Euthyplociidae and Pristiplociidae), and a newly restricted Ephemeridea (Ichthybotidae, Ephemeridae s.s., Palingeniidae and Polymitarcidae s.s.). Sequencing conventions allow recognition of multiple scaphphodont superfamilies, ephemeroid families and polymitarcid subfamilies. Pentagenia is placed in Palingeniidae, and Cretomitarcys is removed from the Scaphphodonta.

KEY WORDS: Higher classification, burrowing mayflies, Ephemeroptera, Scaphphodonta

The Ephemeroptera infraorder Scaphphodonta is equivalent to what was recently considered the superfamily Ephemeroida by McCafferty (1991) and others. It is a grouping hypothesized to be the sister clade of the infraorder Pannota, or the pannote mayflies, within the suborder Furcatergalia (McCafferty and Wang 2000). The Scaphphodonta are technically the "tusked burrowing mayflies" and as a monophyletic group demonstrate a defining apomorphy of having larval tusks derived from the outer body of the mandible (e.g., see Bae and McCafferty 1995). Scaphphodonta does not include other furcatergalian mayflies constituting the Behningiidae (the infraorder Palpotarsa, or tuskless "primitive burrowing mayflies") or the few specialized Leptophlebiidae (infraorder Lanceolata) that are also known to burrow and may possess tusks that are not homologous with scaphphodont tusks (e.g., see Bae and McCafferty 1995, Edmunds and McCafferty 1996).

McCafferty (1991) presented hypothetical relationships of burrowing mayfly groups that served as a basis for exemplifying the application of strict phylogenetic schemes of higher classification to Ephemeroptera. This resulted in a conservative familial classification of the Ephemeroida, or Scaphphodonta, that has to a large degree been followed throughout the world in recent years. That classification consisted of only four families: Australiphemeroidea, Potamanthidae, Ephemeridae, and Polymitarcidae. Ephemeridae was divided into subfamilies Ichthybotinae, Ephemerinae, Hexageniinae, Pentageniinae and Palingeniinae. All of these subfamilies except Hexageniinae had been recognized as families at some point prior to 1991. Ichthybotinae, which had originally been considered a family by Demoulin (1957a) but historically not such by others, was reestablished by McCafferty (1999). Polymitarcidae was divided into the subfamilies Pristiplociinae, Euthyplociinae, Exeuthyplociinae, Asthenopodinae, Campsurinae and Polymitarcinae.

1Received March 1, 2004. Accepted July 7, 2004.

2Department of Entomology, Purdue University, West Lafayette, Indiana 47905, U.S.A. E-mail: mcaffer@purdue.edu.

Mailed on December 21, 2004
Previous to this, however, the latter three had been considered in a more restricted family Polymitarcyidae, and Euthyplociinae and Exeuthyplociinae had been considered in the family Euthyplociidae. Pristiplociidae was given familial status by McCafferty (1997).

Since the McCafferty (1991) study, certain characters from internal anatomy that had been documented by Landa and Soldán (1985) and used by McCafferty (1991) have proven to be unreliable mainly because they had been based on too few exemplars within taxa. In addition, important new phylogenetic analyses of burrowing mayflies were made by Bae and McCafferty (1995) and Kluge (2003). These findings along with ancillary studies by McCafferty (1999) and McCafferty and Wang (2000) have prompted a reevaluation and reclassification of the Scaphodontida as presented below.

PHYLOGENY

Compared to the analysis of McCafferty (1991), the phylogenetic analysis based on tusk morphology given by Bae and McCafferty (1995) offered a more convincing hypothesis of branching sequences of certain clades, one example being that the Campsurius group (Campsuriinae) and Asthenopus group (Asthenopodinae) were sister clades rather than the Campsurius group and the Ephoron group (Polymitarcyinae). The Campsurius group and Asthenopus group tusks were shown to share an apomorphic large mediobasal spine, medioapical crenulation and ventral setation. The Bae and McCafferty (1995) study also showed that within the extant Scaphodontida excluding the basally derived Potamanthus group (Potamanthidae), the Euthyplocia + Exeuthyplocia groups (Euthyplociinae and Exeuthyplociinae) do not share additional apomorphies with other clades, but have tusks with unique medial and lateral rows of setae. Among remaining clades, the Pentagenia group (Pentageniinae) + the Palingenia group (Palingeniinae) were hypothesized to be derived from an ancestor common with the Ephemera group (Ephemerinae) + Hexagenia group (Hexageniinae) rather than from within the Hexagenia group. This is supported by the apomorphic strong basal arch of the tusks in Ephemera + Hexagenia groups but not Pentagenia + Palingenia groups, and by the apomorphic U-shaped or arched arrangement of setae basally on the tusks found in Pentagenia + Palingenia groups but not the Ephemera + Hexagenia groups.

Kluge (2003) also presented data that suggested the Euthyplocia + Exeuthyplocia groups to have a basal branching position among non-potamanthid Scaphodontida, and gave another synapomorphy for these groups, i.e., the unique anteriorly developed clypeus. In addition, he hypothesized a sister relationship between a clade consisting of the Ephoron + Campsurius + Asthenopus groups and a clade consisting of the Pentagenia + Palingenia groups. For example, these clades were shown to share apomorphies including forecoxae that are nearly contiguous, and an inner basal convexity of the larval fore femora with a curved arrangement of setae [Kluge also included use of the arrangement of setae at the base of the tusk that had been introduced by Bae and McCafferty (1995)]
for the Pentagena + Palingenia groups, see above]. Although Kluge (2003) stated that two-segmented maxillary and labial palps represented another synapomorphy for the Pentagena + Palingenia + Ephoron + Campsurus + Asthenopus groups, the assigned character states of two- or three-segmented palps are not consistently distributed within this latter grouping or its hypothesized sister clade, or nearest outgroup (Ephemera + Hexagena groups). For example, larvae of Pentagena vittigera (Walsh) frequently have a second segmentation line in the maxillary palps, and the labial palps of genera of the Hexagena group (e.g., Litobrancha McCafferty and some Hexagena Walsh) are commonly two-segmented, as are species within the Ephemera group (e.g., at least some Afrromera Demoulin). Kluge’s statement of synapomorphy might better have been limited to the thicker, clublike, rounded palps (versus narrow, falcate or truncate palps).

The hypothesis of the sister relationship of Pentagena + Palingenia groups and the Ephoron + Campsurus + Asthenopus groups is considerably different from the proposed relationships of Palingeniidae and Ephemeridae first given by McCafferty (1972) and McCafferty and Edmunds (1976) and expressed in the McCafferty (1991) scheme. However, behavioral evolutionary trends among the Scaphodonta that were theorized by Bae and McCafferty (1995) remain for the most part compatible with Kluge’s phylogenetic hypothesis. In addition, functional and behavioral differences associated with burrowing in Hexagena and Pentagena Walsh (Keltner and McCafferty 1986) as well as similarities between Pentagena and Tortopus Needham and Murphy (Campsurus group) (McCafferty unpublished) are also compatible with Kluge’s hypothesis. Essentially, Pentagena + Palingenia + Ephoron + Campsurus + Asthenopus groups demonstrate what appears to be well-armored and heavily sclerotized heads and tusks associated with an advanced type of burrowing that can involve chiseling into hard substrates or compacted substrates such as clay (e.g., Edmunds et al. 1956, Scott et al. 1959, Keltner and McCafferty 1986, Bae and McCafferty 1995, Edmunds and McCafferty 1996). Although the capacity for this type of burrowing may not be strictly realized in the individual microhabitats of every species within the clade, it does not exist in other Scaphodonta. The significant change from the Bae and McCafferty (1995) interpretation is that this behavioral trend evolved only once rather than twice independently within the Scaphodonta.

Kluge’s (2003) additional hypothesis of a derivation of Behningiidae within the Scaphodonta is not convincing because it was based on suppositions that numerous characters only possibly derived in common with the Scaphodonta were lost subsequently in Behningiidae. Behningiidae forewings are unlike Scaphodonta in general and the most plesiomorphic adults of Pannota (Neoephemeridae) in that they demonstrate only an inconsistent, slight tendency for basal vein curvature (possibly but not necessarily suggesting a phylogenetic branch basad of the common ancestor of the Scaphodonta and Pannota); larvae do not possess tusks or other apomorphous structures that are associated with burrowing in Scaphodonta (and there is no evidence that precursors to Behningiidae possessed tusks or such structures); and larvae are known to be an unusual type of
interstitial sand-dwellers with predatory habits (Keffermüller 1959, Tshernova and Bajkova 1960, McCafferty 1975, Tsui and Hubbard 1979), a biology fundamentally dissimilar to that found among the Scaphodonta. In addition, the considerable unique morphology associated with both the larvae (e.g., legs) and adults (e.g., genitalia) of Behningiidae (see McCafferty 1979, Peters and Gillies 1991) does not appear to be derived in common with, or derived from, any Scaphodonta.

Considering all of the above, certain phylogenetic modifications can now be made to the cladogram of Scaphodonta originally offered by McCafferty (1991). Such a revised cladogram of the monophyletic groups of genera of the Scaphodonta is shown in Figure 1.

Fig. 1. Hypothesized cladogram of monophyletic groups of genera of Scaphodonta. See text for defining apomorphies.
CLASSIFICATION

The new phylogeny in turn requires a new, strict phylogenetic higher classification designed within the constructs of Linnaean hierarchy. Such a classification (Table 1) can reflect the branching sequences of major clades (Fig. 1) without the use of any numerical coding system.

Table 1. Higher classification of the Scaphodonta. Within superfamilies, single asterisked taxa are known from fossils only, and double asterisked taxa include both extant and extinct species. Bracketed genera are those whose relationships within the monophyletic group of genera remain unresolved. General distributions are given parenthetically.

Superfamily Potamanthoidea, n. superfam.
 Family Potamanthidae Albarda (Holarctic, Oriental)
 Genus *Rhoenanthus* Eaton
 Subgenus *Rhoenanthus* s.s.
 Subgenus *Potamanthindus* Lestage
 Genus *Anthopotamus* McCafferty & Bae
 Genus *Potamanthus* Pictet
 Subgenus *Potamanthus* s.s.
 Subgenus *Stygifloris* Bae, McCafferty & Edmunds

Family Australiphemeridae* McCafferty (Pangaean)
 McCafferty, *Paleoanthus* Kluge]

Superfamily Euthyplocioidea, n. superfam.
 Family Euthyplociidae Lestage (Pantropical)
 Subfamily Euthyplociinae s.s. (Pantropical)
 [Genera *Campylacia* Needham & Murphy, *Euthyplocia* Eaton, *Mesoplocia*
 Demoulin, *Polyplacida Lestage, Proboscidoplocia* Demoulin]
 Subfamily Exeuthyplociinae Gillies (Afrotropical)
 Genus *Afroplocia* Lestage
 Genus *Exeuthyplocia* Lestage

Family Pristiplociidae* McCafferty (Gondwanan)
 Genus *Pristiplocia* McCafferty

Superfamily Ephemeroida
 Family Ichthybotidae Demoulin (New Zealand)
 Genus *Ichthybotus* Eaton

Family Ephemeridae** Latreille (nec Australian)
 Subfamily Ephemeriniae** s.s. (nec Neotropical, nec Australian)
 Genus *Ephemera** Linnaeus
 Subgenus *Ephemera* s.s.
 Subgenus *Aethphemera* McCafferty & Edmunds
 Genus *Afromera* Demoulin
 Subfamily Hexageniinae** McCafferty (nec Australian)
 Genus *Denina* McCafferty
 Genus *Hexagena** Walsh
 Subgenus *Hexagena** s.s.
 Subgenus *Pseudeatonica* Spieth
Genus Litobrancha** McCafferty
Genus Eatonigenia Ulmer
Genus Eatonica Navás

Family Palingeniidae Albarda (nec Australian, nec Neotropical)
Subfamily Pentageniinae McCafferty (Nearctic)
Genus Pentagenia Walsh
Subfamily Palingeniinae s.s. (E. Hemisphere, nec Australian)
 [Genera Anagenesia Eaton, Chankagenesia Buldovsky, Cheirogenesia
 Demoulin, Mortogenesia Lestage, Palingenia Burmeister,
 Plethogenesia Ulmer]

Family Polymitarcyidae** Banks (nec Australian)
Subfamily Polymitarcyinae s.s. (nec Australian, nec Neotropical)
Genus Ephorion Williamson
Subfamily Campsurinae** Traver (Neotropical, Nearctic)
Genus Campsaurus Eaton
Genus Tortopus Needham & Murphy
 [Genus Mesopalingea* Whalley & Jarzembowski (Laurasian)]
Subfamily Asthenopodinae Edmunds and Traver (Pantropical)
Genus Asthenopus Eaton
Genus Povilla Eaton
 [Genus Asthenopodichnium* Thenius]

Sequencing conventions (see Wiley 1981) are utilized for recognizing three superfamilies within Scaphtodonta, four families within the Ephemeroidea, and three subfamilies within the Polymitarcyidae. The hypothesized cladogram of superfamilies, families and subfamilies can be reproduced precisely from their linear hierarchical classification. Within certain families or subfamilies, the phylogeny of genera has been hypothesized previously. For the basis of the linear sequence of taxa within Potamanthidae, see Bae and McCafferty (1991); and for the basis of the linear sequence of taxa within the Ephemeroidea, see McCafferty (1973, 1987), McCafferty and Gillies (1979) and McCafferty and Sinitshenkova (1983). Those genera that are listed alphabetically within brackets in Table 1 require cladistic analysis before their interrelationships can be hypothesized.

The placement of the extinct families Australipheremeridae and Pristiplociidae (shown by dashed lines in Fig. 1) is presently hypothesized from morphological data limited to alate fossils. Some recent genera in other families of Scaphtodonta are represented in the Cenozoic, but no recent genera are represented in the fossil record previous to the Cenozoic. The present and historical placement of Mesozoic genera among recent families is either unfounded or provisionally based on limited morphological data. Mesogenesia Tshernova was originally described in the Palingeniidae (Tshernova 1977), and Demoulin (1957b) considered Parabaetis Haupt in Ephemeroidea, but both genera were shown not to belong to the Scaphtodonta by McCafferty (1990). The genus Mesopalingea Whalley and Jarzembowski (1985) was originally placed in the family Palingeniidae. However, based on the morphology of the well-fossilized larval tusks, the genus should provisionally be placed in the subfamily Campsurinae of
the family Polymitarcyidae. This would represent a rare instance of a Mesozoic family of Scaphodonta surviving the K-T boundary and the mass extinctions associated with that critical juncture. Cretomitarcys Sinitshenkova (subfamily Cretomitarcyinae Sinitshenkova) was based on an alate specimen found in upper Cretaceous New Jersey amber. Sinitshenkova’s (2000) placement of this mayfly in the family Polymitarcyidae is not supportable because wing venation characteristics, including lack of fundamental basal vein curvature and the orientation of cubital and anal veins in the forewings are not those of Scaphodonta. Instead, forewing venation, such as the uninterrupted extension of veins CuP and A1 from the base of the forewing to the outer margin, suggests an extinct family (Cretomitarcyidae, n. stat.) of the suborder Carapacea, and extensive longitudinal venation of the hindwing may further suggest a relationship with the family Baetiscidae [compare Figs. 3 and 4 of Sinitshenkova (2000) with Figs. 226a and b of Edmunds et al. (1976)].

An important aspect of the new classification of Scaphodonta taxa is the recognition of two additional superfamilies and the restriction of the concept of the superfamily Ephemeroidae. The placement of the North American genus Pentagenia is also of some significance because it adds another family of mayflies (Palingeniidae) to the North American fauna. The placement of Pentagenia as such had been proposed by McCafferty and Edmunds (1976), but at that time it was supposed that the Palingeniidae had arisen from within Ephemeridae, and thus recognition of the two families was later deemed incompatible with a phylogenetic classification because of assumed paraphyly (McCafferty 1991). The family Ichthybotidae is somewhat an anomaly because of its geographic restriction to New Zealand in the absence of any other known Amphihotic Scaphodonta. McCafferty (1999) explained it as being relictual, suggesting that Scaphodonta was probably more widely distributed in the Southern Hemisphere prior to the K-T extinctions.

The familial classification presented here, including the linear sequence of families, is for the most part similar to that given a half century ago by Edmunds and Traver (1954). This may seem remarkable if one considers that the former classification was phenetic based. Some families have been slightly redefined or restricted in the new classification, Behningiidae has been removed; and the familial classification, including extinct families, would not be allowable under strict rules of phylogenetic classification within a single superfamily. Nevertheless, the comparison illustrates that family recognition in mayflies based on phenetic analyses may to a large degree be congruent with family recognition within a strict phylogenetic system. This should not detract from the importance of continuing to test and refine classifications based on cladistics, but instead illustrates that relative stability can sometimes be maintained by choosing among strict phylogenetic classification options.
LITERATURE CITED

