ANNALEN

DES

K. K. NATURHISTORISCHEN HOFMUSEUMS

REDIGIRT

VON

DR. FRANZ RITTER VON HAUER.

I. BAND — 1886

(MIT EINUNDZWANZIG TAFELN).

WIEN, 1886.

ALFRED HÖLDER

K. K. HOF- UND UNIVERSITÄTS-BUCHHÄNDLER.
Vergleichende Studien über das Flügelgeäder der Insecten.

Von

Josef Redtenbacher,
Supplent an der Gumpendorfer Communal-Oberrealschule in Wien.

Mit zwölf lithogr. Tafeln (Nr. IX—XX).

Selbst dem oberflächlichsten Beobachter kann es nicht entgehen, dass die Vertheilung der Adern im Flügel der Insecten, trotz der manchmal verwirrenden Mannigfaltigkeit, doch für die Arten und Gattungen, ja selbst für grössere Formenkreise, einen bestimmten Charakter erkennen lässt. Es war daher nur natürlich, dass die Vertreter der systematischen Entomologie das Flügelgeäder als eines der wesentlichsten Kriterien für die Abgrenzung der Arten, Gattungen etc. in Anwendung brachten und demgemäß für jede der einzelnen Insectenordnungen, resp. Unterordnungen eine eigene, freilich oft nicht sehr glückliche Nomenclatur schufen. Da ausserdem die Mehrzahl der beschreibenden Entomologen sich vorwiegend oder ausschliesslich mit der einen oder anderen Insectenordnung beschäftigten, ohne auf die übrigen Abtheilungen Rücksicht zu nehmen, so entstand eine Nomenclatur, welche nicht nur für jede Ordnung, sondern selbst für kleinere Abtheilungen eine verschiedene war. Die Verwirrung, welche dadurch entstand, ist jedem genugsam bekannt, der sich je mit der Bestimmung von Insecten verschiedener Ordnungen befasste; dennoch scheint es mir nicht überflüssig, an einem Beispiele zu zeigen, welche verschiedenen Namen eine und dieselbe Ader (der Cubitus oder die VII. Convexader) in den einzelnen Insectenordnungen erhalten hat. Dieselbe heisst bei den

Ephemeriden: Vena praebrachialis (Vorderflügel), Cubitus (Hinterflügel),
Odonaten: Sector brevis,
Perliden: Cubitus posticus,
Blattiden: Vena ulnaris posterior, internomedia,
Mantiden: Vena ulnaris anterior, internomedia + subinternomedia,
Grylloodeen: Vena dividens, ulnaris (Hinterflügel), internomedia,
Locustiden: Vena dividens (Vorderflügel), ulnaris anterior, internomedia,
Acridiern: Vena ulnaris anterior, internomedia,
Termiten: Submediana, externomedia (?),
Embiden: Vena discoidalis pr. p.,
Psociden: Cubitus + Hinterast des Sector radii,
Hemipteren: Costae lineatae,
Homopteren: Radius medius,
Sialiden, Megalopteren und Panorpen: Cubitus posticus,
Trichopteren: Ramus divisorius cubiti antici (Vorderflügel), Cubitus posticus (Hinterflügel),
Lepidopteren: Hintere (innere) Mittel- (Subdorsal-) Rippe,
Coleopteren: Cubitus, internomedia, vordere Nebenader etc.,
Hymenopteren: Discoidalader + Cubitalader (pr. p.) + innere rücklaufende Ader,
Dipteren: Submediania, 5. Längsader, Posticalader.

allein gerade bei der Untersuchung des Charakters einer Ader ergeben sich oft solche Schwierigkeiten, dass man selbst nach wiederholten Versuchen nicht ins Reine kommt. Namentlich bei älteren, getrockneten oder gespannten Insecten ist es manchmal unmöglich, unter den vielen Falten, welche durch das Spannen oder Eintrocknen entstehen, jene herauszufinden, welche als Reste von Adern anzusehen sind, und dass dabei nicht selten Irrtümer unterlaufen können, ist selbstverständlich. Manche Insecten, namentlich seltenere, wurden nur schematisch gezeichnet, ebenso wurde bei Formen mit reich entwickeltem Zwischengeädér (Libellen, Fulgoriden etc.) dasselbe theilweise oder vollständig vernachlässigt, umsowehr, als es ohnedies meist nur von geringer Bedeutung ist.

Vergleicht man die Flügel verschiedener Insectenordnungen miteinander, so lässt sich nicht verkennen, dass die Zahl der Adern keine zufällige, sondern von verschiedenen Factoren abhängig ist. Die geologisch älteren Orthopteren und Neuropteren zeigen ein viel reicheres Geädér als die Coleopteren, Lepidopteren, Hymenopteren und Dipteren; ebenso besitzen unter den Rhynchothen gerade die ältesten Formen, die Cicaden und Fulgoriden, viel zahlreichere Adern als die Hemipteren. Es erscheint demnach unzweifelhaft, dass die ältesten Insectenformen gewissermassen mit einem Überschuss von Adern versehen waren, dass dagegen im Laufe der Entwicklung durch Reduction alles überflüssige entfernt und auf diese Weise ein einfacheres System des Flügelgeädér geschaffen wurde. Ebenso leicht lässt sich erkennen, dass auch die Grösse des Flügels von bedeutendem Einfluss auf die Zahl der Adern ist, weshalb kleine Formen fast ausnahmslos ein viel spärlicheres Geädär besitzen als Insecten mit grossen Flügeln. Beispiele dieser Art gibt es unzählige; ich erwähne nur unter den Neuropteren Coniopterix, unter den Orthopteren Tettix, unter den Dipteren Cecidomyia, die Hippoboscidens etc., unter den Coleopteren Ptilus, Cis, Corticaria, Batrisus, Scydmaenus, Sacium etc., unter den Hymenopteren Cynips, Pteromalus etc. Auch das Verhältniss zwischen Vorder- und Hinterflügel bestätigt diese Anschauung. Wo der Vorderflügel den Hinterflügel an Grösse übertrifft, übertagt er denselben stets auch an Zahl der Adern (Hymenopteren); wo das Entgegengesetzte der Fall ist, ist auch im Hinterflügel das Geädär reicher entwickelt als im Vorderflügel (Orthopteren, Neuropteren etc.). Endlich spielen ohne Zweifel auch die Consistenz der Flügelhaut, sowie die Stärke der Adern selbst eine Rolle, da wenige, aber kräftige Adern denselben Dienst leisten (Coleopteren) als zahlreiche, zarte Adern (Chrysoplen etc.), andererseits eine derbere, elastische Flügelhaut (Hymenopteren) eine geringere Adernzahl erheisch als eine zarte (Hemerobiden, Chrysoplen) oder spröde (Odonaten). Ein Ueberzug von Schuppen, Haaren oder ein Wachsbegle Scheint eine ähnliche Wirkung wie Verdickung der Flügelhaut herbeizuführen, darum sind die Flügel der Trichopteren oder Lepidopteren mit weniger Queradern versehen als die sonst so ähnlichen Flügel der Panorpen. Dass schliesslich auch durch Anpassung und Mimikry ein reicheres Geädär entstehen kann, wo man ein spärliches vermuthen sollte, und umgekehrt, braucht kaum erwähnt zu werden.

Tracheenkiemen entstanden sind, ist noch fraglich, denn auch der entgegengesetzte Fall, dass Flügel durch Metamorphosierung zu Tracheenkiemen werden, liegt nicht ausser dem Bereich der Möglichkeit. Dass die Flügel der Insecten ursprünglich nicht active, sondern bloß passive Bewegungsorgane waren, also wie der Pappus der Compositen etc. zum Schwärmen und zur Verbreitung der Brut an entfernte Orte dienen, ist nicht bloß möglich, sondern sogar wahrscheinlich. Den Flügeln ähnliche Gebilde stellen jedenfalls auch die netzartig geadernten, dreieckigen Ausbuchtungen an den Seiten des Prothorax mancher Mantiden (Choraedodis, Lithomantis) dar. Auch eine Tingis-Art aus Texas zeigt am Prothorax glashelle Fortsätze von dreieckiger Gestalt und einem ähnlichen netzartigen Geäder, wie es die Deckflügel besitzen.

Ein Umstand, welcher von Adolph nicht erklärt wurde, ist der, dass die beiden Aderformen eine verschiedene Oberflächenlage einnehmen, indem die primären in einem tieferen Niveau verlaufen als die secundären, weshalb jene als Conca- oder Thaladern, diese als Convex- oder Bergadern bezeichnet werden. Bei regelmässiger Aufeinanderfolge der Adern muss demnach der Querschnitt des Flügels eine Zickzack- oder Wellenlinie bilden, welche schon beim ersten Anblick den Gedanken erregt, dass eine Faltung die Ursache dieser Erscheinung sein muss. Geht man nun von der Annahme aus, dass die Flügelplatten rascher wachsen als die einschliessende Flügelscheide, welche denselben nur einen engen Spielraum bietet, so ist es wohl denkbar, dass der Flügel sich in ziemlich regelmässige Falten legen muss, umso mehr, als ja die primären Adern Verdunnungen der Flügelhaut bewirken, welche sich in Folge dessen gerade an diesen Linien am leichtesten biegen und knicken lässt, während die dazwischen liegenden Felder anfangs nur schwach convex erscheinen, später bei fortgesetztem Seitendruck aber immer stärker zusammengepresst werden. Am besten lässt sich dieser Vorgang versinnlichen, wenn man einen Streifen Kartenpapier zwischen zwei fixirte Glasplatten zusammenschiebt; wählt man die richtige Papierstärke, so legt sich derselbe in regelmässige Wellenfalten zusammen, namentlich dann, wenn man durch Einschnitte in gleichen Abständen •Verdunnungen• des Papiers erzeugt, welche den primären Adern entsprechen. An diesen Einschnitten biegt sich das Papier leichter und bildet spitze Winkel, während die dazwischen liegenden Theile sich anfangs nur schwach, später aber immer stärker wölben. Dass beim Flügel nicht auch der Quere nach eine ähnliche Faltung eintritt, erklärt sich daraus, dass die primären Adern eben nur der Länge nach
verlaufen. Uebrigens ist es nicht unmöglich, dass die zahlreichen wellenförmigen Querfalten im Flügel der grösseren Cicaden durch eine ähnliche Faltenbildung entstanden sind; die Queraden dagegen dürften kaum auf diese Weise gebildet worden sein.

Neben dieser Faltung im Kleinen tritt häufig noch eine zweite Art auf, welche zur Folge hat, dass der Flügel in der Scheide oft in unregelmässigen Lappen zusammengelegt erscheint, etwa wie wenn ein plissierter Stoff unregelmässig zusammengebauscht würde. Mit der Vertheilung der Adern und ihrer Oberflächenlage steht diese Faltung im Grossen, soweit uns bekannt ist, ausser Zusammenhang; doch wären hierüber neuere und ausgedehnte Untersuchungen nöthig, da sich vielleicht manche Unregelmässigkeit des Flügelgeäders auf diese Weise erklären liess (Cicaden).

Als Endergebniss jener Faltung in Folge des Seitenruckes vertheilen sich demnach die Adern in zwei übereinanderliegende Schichten: die primären verlaufen in den Vertiefungen, während die secundären auf dem Rücken der einzelnen Falten zu liegen kommen. Damit ist aber auch bereits die Bildung des Fächers, der ursprünglichen Form des Insectenflügels, gegeben, wie er im Hinterflügel der ältesten Insectenformen, namentlich der Orthopteren und Neuropteren, wenn auch nicht mehr in der ursprünglichen Vollkommenheit und Regelmässigkeit noch vorhanden ist.

Aus dem verschiedenen Ursprunge concave und convexer Adern erklärt es sich, dass sich dieselben in mancher Beziehung fast wie positive und negative Grössen verhalten, indem eine Concavader eine benachbarte Convexader gewissermassen unter das Flügel niveau herabdrückt, und wenn dieselbe ihr zu nahe rückt, sie sogar vollständig auszulöschen im Stande ist. Bei den Hymenopteren z. B. läuft die Analader nur als concave Falte dicht hinter dem Cubitus und zieht denselben manchmal so in die Tiefe, dass derselbe fast concav erscheint. Ja bei manchen Cicadeen, Fulgoriden etc. ist es oft nicht zu erkennen, ob man es mit der Analader oder nur mit dem herabgedrückten Cubitus zu thun hat. Die erwähnte Aehnlichkeit mit positiven und negativen Grössen wird noch dadurch bestärkt, dass man in mancher Beziehung von einer Intensität der Adern sprechen kann, insoferne als concave Adern das eine Mal Convexlinien blos durch-
brechen, ein anderer vollständig auslöschen oder aber dieselben gar nicht beeinflussen, so dass in dem einen Falle der concaven, im andern der convexen Ader eine grössere Intensität zugesprochen werden muss. Demgemäss ist es nicht anders als natürlich, dass zwei concave Adern, wenn sie einander nahe rücken, die dazwischen liegende Convexader verkürzen oder auslöschen, während das Umgekehrte eintritt, wenn zwei Convexader eine concave Linie einschiessen. Beispiele der ersten sowohl als der zweiten Art sind in Hülle und Fülle vorhanden.

Da die Adern des Flügels nicht bloss Rippen, d. h. mechanische Stützen, sind, sondern auch Blutgefäße etc. enthalten, ist es geradezu nothwendig, dass dieselben zur Erleichterung der Circulation durch Queradern miteinander in Verbindung treten, und dort, wo Convexadern an der Wurzel von Concavlinien abgeschnitten werden, sind dieselben daher fast ausnahmslos durch Queradern mit den benachbarten Convexadern verbunden. Ob die Queradern nur als modifizierte Aeste der Längsadern anzusehen sind, ist schwer zu erweisen, doch spricht hiefür der Umstand, dass Queradern häufig durch veränderte Lage den Charakter von Längsadern annehmen und umgekehrt (Libellen, Myrmelooniden, Hemipteren, Hymenopteren).

Häufig kommt es vor, dass Queradern selbst wieder der Quere nach durch Adern verbunden sind, und wenn sich solche secundäre Queradern in eine Reihe ordnen, nehmen sie das Aussehen von Längsadern an, bei denen jedoch entweder Anfang oder Ende blind sind. Solche Adern bezeichne ich als Venae spuriae; doch kommen unter diesem Namen auch echte Venen vor, die in der Regel als Reste verschwundener Längsadern anzusehen sind (Vena spuria der Dipteren). Dagegen sind wirkliche Venae spuriae besonders häufig zu finden in der Area mediastina und discoidalis der Acridier etc. — Rücken zwei benachbarte Queradern, deren Lage überhaupt sehr variabel zu sein scheint, sehr nahe aneinander, dann kommt es auch häufig zu einer theilweisen Verschmelzung, welche zur Bildung gegabelter Queradern führt, wie sie bei Perliden, Hymenopteren etc. häufig zu finden sind. Verschmelzen dieselben völlig miteinander, dann sind sie meist durch ihre Stärke noch erkennbar; auf diese Weise dürften die Stege und der Nodus im Libellenflügel entstanden sein. Nicht selten treten auch hinter einander gelegene Queradern miteinander in Verbindung, namentlich dann, wenn die dazwischen liegende Längsader auf irgend eine Art ausgelöscht wird. Auf diese Weise sind z. B. die Queradern entstanden, welche im Flügel der Hymenopteren zwischen Radius und Cubitus verlaufen, da hier mit wenigen Ausnahmen die V. Ader vollkommen verloren gegangen ist.

Da Queradern wahrscheinlich nur Aeste von Längsadern sind, erleiden sie auch von Seite der Concavadern dieselben Veränderungen wie Convexadern, d. h. sie werden häufig durchbrochen oder vollkommen aufgelöst. Umgekehrt kann aus dem Vorhandensein solcher Einschnitte und Durchbrechungen von Queradern auch immer geschlossen werden, dass hier eine concave Ader oder Falte ursprünglich vorhanden war. Treffen convexe Längsadern auf Queradern, so zeigt sich häufig eine Ausbiegung oder Knickung der letzteren, die selbst dann noch bestehen kann, wenn die betreffende Längsader resorbiert wurde. Umgekehrt sind auch Queradern nicht ohne Einfluss auf Längsadern, besonders Convexadern, sondern erzeugen auf denselben verschiedenartige Ausbuchtungen und Knickungen. Treten solche Queradern in grösserer Anzahl und abwechselnd auf beiden Seiten einer Längsader auf, dann wird diese häufig zick Zackförmig hin- und hergebogen, wie dies z. B. bei den Längsadern der Hemerobiden, Libelluliden etc. der Fall ist.

Wie oben erwähnt wurde, ist der ursprüngliche Insectenflügel sichерartig, das ist aus regelmässig alternirenden Concav- und Convexadern gebildet. Ein

Da die einzelnen Adern des Fächerflügels vermöge ihrer Convergenz an der Basis auf einen verhältnismässig winzigen Raum zusammengedrängt würden, erscheint es nothwendig, dass einzelne Concav- und Convexadern schon vor der Basis erlöschen, dafür aber durch Queradern mit den benachbarten Adern in Verbindung treten. Da aber zwei einander genäherte Concavadern eine dazwischen gelegene Convexader ganz oder teilweise auflösen können und umgekehrt, so ist die Möglichkeit gegeben, dass einzelne Adern, sowohl concav als convexe, ja selbst ganze Adersysteme ausfallen, während die bleibenden durch Queradern oder durch Verschmelzung und Aneinanderlagerung in um so engere und festere Verbindung treten. Die Differenzierung und Vereinfachung (Reduction) des Flügelgeäders erscheint demnach zugleich eine physiologische und mechanische Nothwendigkeit. Die Folge dieser Arbeitsteilung — sit venia verbo — ist, dass ursprünglich getrennte Adern mindestens an der Wurzel sich vereinigen und auf diese Weise mehrfach verzweigte Aderstämmle (Systeme) bilden, von denen ohne Zweifel jeder seinen bestimmten Antheil an der Totalbewegung des Flügels besitzt. In erster Linie gilt dies von den convexen Adern; dass jedoch auch Concavadern aus einem ganzen Adercomplex durch Vereinfachung und Auslösung gebildet werden können, beweist das Verhalten der Analader bei Schmetterlingen und Eintagsfliegen, wovon später die Rede sein wird. Die Zähigkeit, mit der manche concave Adern, besonders die Subcosta und Analader, wie schon Adolph bemerkt, erhalten bleiben, scheint geradezu für diese Anschauung zu sprechen. Wie also die ursprünglich gleichartigen Wirbel der Vertebraten durch Differenzierung in eine Anzahl von Regionen zerfielen, von denen jede einer bestimmten Function dient, so hat sich auch der Fächerflügel der Ur-Insecten in eine Anzahl von untergeordneten Organen gegliedert, wovon höchst wahrscheinlich jedes eine bestimmte Rolle beim Fluge spielt. Dadurch aber ist überhaupt der Flügel erst zum Flugorgan geworden, während er in seiner ursprünglichen Form nur als Fallschirm oder im besten Falle als Drache verwendet werden konnte.

Da bekanntlich bei den meisten Insecten der Vorderflügel das Geäd der Hinterflügels umgekehrt beeinflusst, so lässt sich wohl vermuten, dass man den normalen Typus eines differenzirten Flügels bei solchen Insecten finden wird, deren Vorder- und

Nach Pettigrew soll ein vollkommen entwickelter Flügel einen starken, aber elastischen Vorderrand besitzen, um die Luft durchscheiden zu können, er soll oben convex, unten concav und gleichzeitig etwas spiralgig um seine Längssache drehbar sein. Diesen Anforderungen entspricht nun der Flügel der meisten, namentlich der höheren Insecten, vollkommen, indem die als Charniere fungirenden Concazfnalen sowohl eine Wölbung nach oben, als auch eine spiralgige Drehung ermöglichen, und die vordersten Convexadern, Costa und Radius, entweder sehr nahe aneinander rücken oder vollkommen verschmelzen. Der letztere Fall findet sich bei vielen Hemipteren und Hymenopteren; bei den Coleopteren und Lepidopteren ist die Verschmelzung nur teilweise vorhanden. Die Subcosta geht dabei teilweise oder völlig verloren, aber auch dort, wo sie erhalten ist, hat die Natur dafür gesorgt, dass sie nicht störend wirken kann, und zwar auf verschiedene Weise. Bei Perliden und Megalopteren erscheint sie ganz unter

1) Als mnemotechnisches Hilfsmittel mag noch angeführt werden, dass bei concaven Adern die Summe aus der römischen Ziffer und dem Index stets eine ungerade Zahl ist (III = III + 2 = 5; VIII = VII + 1 = 9 etc.), während bei Convexadern diese Summe eine gerade Zahl gibt (III = III + 3 = 6; VIII = VIII + 2 = 10).
den Radius geschoben, häufig ist sie durch zahlreiche Queradern fest mit Costa und Radius verbunden, welche namentlich bei den Odonaten zum Theil stark verdickt erscheinen und die sogenannten «Stege» bilden. Nur selten setzt sich die Flügelhaut noch über die Costa hinaus fort und bildet dann ein sogenanntes Präcostalfeld, wie es z. B. die Orthoptera saltatoria, manche Käfer (Silpha etc.) und viele Schmetterlinge zeigen. Bei den ersteren ist dasselbe meist nur im Vorderflügel, selten im Hinterflügel ausgebildet, die Käfer, Schmetterlinge und manche Hemipteren dagegen besitzen dasselbe nur im Hinterflügel.

Der Radius ist meistens mehrfach verzweigt, die einzelnen Sectoren in der Regel durch Queradern verbunden, welche namentlich bei Insecten mit zahlreichen Radialästen (Megalopteren) oft treppenartig angeordnet sind. Die V. Ader zeigt eine auffallende Tendenz zur Reduction, indem sie entweder teilweise oder völlig verschwindet oder sich so innig mit dem Radius, resp. seinen Sectoren (Myrmeleon) oder mit dem Cubitus (Perliden) verbindet, dass es oft schwer hält, sie davon zu trennen. Gerade bei den ältesten Insectenformen, den Orthopteren und Neuropteren etc., erscheint sie in der Regel deutlich ausgebildet. Der Cubitus ist wie der Radius meist verzweigt oder wenigstens gegabelt, kann aber durch Reduction auch auf eine einfache Ader beschränkt werden oder ganz ausfallen (Acrider, Hemipteren etc.).

Am mannigfaltigsten verlaufen die Adern des Analfeldes, bald einzeln und regelmässig durch Concavadern getrennt, bald mehr oder weniger in Gruppen vereinigt. Dazu kommt, dass das Analfeld sehr häufig, namentlich bei den höheren Insecten, eine Reduction erfährt, welche die Deutung der einzelnen Ader oft geradezu unmöglich macht. Da dasselbe ausserdem in der Systematik nur eine untergeordnete Bedeutung hat, ist eine detaillierte Behandlung desselben auch nicht unbedingt nöthig.

Von den concaven Adern erweisen sich die Subcosta und Analader als die resistentesten, während die IV. und VI. oft entweder nur als Falten angedeutet sind oder völlig fehlen, oder endlich mehr oder minder verschmelzen und dadurch die eingangs erwähnte V. Ader teilweise oder völlig auslöschen.

Es wurde bereits erwähnt, dass die ursprüngliche Fächerform in keinem Insectenflügel vollkommen erhalten ist, da dieselbe eine selbstständige Flugbewegung nahezu unmöglich erscheinen lässt. Eine vergleichende Beobachtung des Insectenflügels zeigt uns im Gegenteil, dass derselbe eine unverkennbare Tendenz zur Arbeitsteilung, gleichzeitig aber auch zur Vereinfachung und Reduction des Geäders offenbart. Die Natur stattet eben ihre Geschöpfe in der Regel mit einem Ueberschuss gleichartiger Organe aus, welcher einerseits eine grosse Summe von ernährenden und bewegenden Kräften voraussetzt, andererseits aber auch eine unendlich mannigfaltige Art der Differenzierung und Reduction ermöglicht und herbeiführt. Auf diese Weise wird Ueberflüssiges nachträglich wieder entfernt, das Bleibende mannigfach umbildet, so dass die Fähigkeit des Thieres gesteigert wird, ohne dass ein grösserer Kraftaufwand nöthig wäre. Aus diesem Grunde erscheint es gerechtfertigt, jene Insecten für geologisch jünger und höher organisiert zu halten, deren Geader scheinbar einfacher, aber zweckentsprechender ist, gerade so wie das sechsfüssige Insect auf einer höheren Stufe steht als die vielbeinigen Myriopoden. Während also einerseits durch Differenzierung ursprünglich gleichartige Gebilde sich zu einem Organ vereinigen, welches neuen und höheren Aufgaben gewachsen ist, wird gleichzeitig durch Reduction Alles entfernt, was überflüssig oder gar den veränderten Zwecken hinderlich erscheint. In vielen Fällen ist diese Vereinfachung von einer Verkleinerung der Flügelfläche begleitet, ja es frägt sich, ob nicht gerade dieser Umstand die Ursache jener ist.
Sowohl concave als convexse Adern unterliegen der Reduction, zeigen aber dabei ein ganz verschiedenes Verhalten, welches von Adolph (Über Insectenflügel, Nova acta d. kais. Leop. Carol. Akad. XLI, pars II, Nr. 3, 1880) ausführlich erörtert wird. Convexe Adern hinterlassen nämlich als Spuren dunkle Chitinlinien oder erhabene Falten, welche durch Rückschlag wieder in wirkliche Adern übergehen können; concave Adern dagegen werden zu hellen durchscheinenden Streifen oder blos zu concaven Falten, welche die Eigenschaft zeigen, dass die von ihnen getroffenen Quer- und Längsadern oft resorbiert oder durchbrochen werden. Auch diese Falten können durch Rückschlag wieder in Concavadern übergehen. Die Reduction betrifft nicht alle Adersysteme in gleichem Masse, sondern vorwiegend das System der V. Ader und das Analfeld, während Radius und Cubitus erhalten bleiben. Umgekehrt zeigt bei den Coleopteren und Hemipteren gerade die V. Ader eine ziemlich kräftige Entwicklung, während der Cubitus mehr minder schwach ausgebildet ist oder ganz fehlt. Da Vorder- und Hinterflügel sich gegenseitig beeinflussen, ist es eine gewöhnliche Erscheinung, dass bei ersterem das Analfeld, bei letzterem dagegen das Costal- und Radialfeld reduziert sind. Betriff die Vereinigung auch das Analfeld des Hinterflügels, so können beide Flügel gleiche Gestalt und Grösse annehmen, wie dies z. B. bei Isopteryx der Fall ist. Da eine Verringerung der Flügelfläche stets auch eine Reduction des Geäders herbeiführt, so erklärt es sich auch sehr einfach, warum kleine Formen ein viel einfacheres Adersystem zeigen als grössere, verwandte Formen. Die Vereinigung der Flugwerkzeuge kann sogar so weit gehen, dass die Vorderflügel (Tettix, Strepsipteren) ganz verkürmern oder wenigstens nur in untergeordneter Weise beim Flug verwendet werden (Coleopteren); umgekehrt können auch die Hinterflügel völlig ausfallen (Dipteren etc.) oder sie werden von den Vorderflügeln ins Schlepptau genommen, was zur Folge hat, dass ihre Muskulatur sowohl als ihr Geäder eine wesentliche Reduction gegenüber dem Vorderflügel erfährt (Lepidopteren, Hymenopteren etc.).

Abnorme Abweichungen vom oben erwähnten Adertypus kommen bekanntermassen häufig genug vor. Mimikry oder die Umwandlung eines Flügels oder Flügelfeldes zum Stimmorgan bringen in erster Linie ganz unregelmässige und oft schwer zu entzählselnde Geäderformen hervor; Psychopsis, Apochrysa, Phyllum, die Grylloidea und Locustiden bieten eine Menge von Beispielen hiefür. Ebenso kann die eigenthümliche Faltung eines Flügels ganz ungewöhnliche Veränderungen des Geäders herbeiführen (Forficula, Eletherodea). Eine schwier zu erklärende Abnormität bilden ferner die gelötheten oder zusammengeschweissten Längsadern im Vorderflügel der grösseren Cicaden. Eine Durchbrechung von Längs- und Queradern unter gleichzeitiger Verschiebung derselben findet sich bei Pieronareys, Thyridienbildung tritt bei vielen Insecten (Panorpa, Trichopteren, Lepidopteren, Mantis etc.) auf und wird offenbar durch die auflösende Wirkung der IV. und VI. Concavader hervorgerufen; die Erklärung jener Adernunterbrechungen aber, wie sie die Cicaden zeigen, ist noch ausständig.

Unter keinen Umständen genügt es, die Adern eines Flügels einfach nach arithmetischen Grundsätzen zu deuten; die erste Ader eines Flügels kann die Costa, die Subcosta, der Radius oder gar eine Verschmelzung mehrerer Adern sein. Es muss in Folge dessen bei jeder Ader vor Allem die Oberflächenlage constatirt werden, die Gleichwerthigkeit derselben aber lässt sich nur durch zahlreiche Vergleiche mit anderen nahe verwandten Formen feststellen, freilich ein oft mühsamer Weg, aber doch der einzige, welcher zu einem sicheren Resultate führen kann. Studien dieser Art führen nebenbei zu oft merkwürdigen Ergebnissen, namentlich in Bezug auf Verwendungbarkeit des Geäders zu systematischen Zwecken. Wer z. B. nur eine beschränkte Anzahl von Käferflügeln
Vergleichende Studien über das Flügelgeänder der Insecten.

163

untersucht, kann leicht der Meinung sein, dass eine allgemeine Charakteristik derselben keine Schwierigkeiten bietet. Sobald man aber eine größere Anzahl von Formen vergleicht, erkennt man bald, dass eigentlich kein einziges Merkmal als allgemein charakteristisch gelten kann. Namentlich ist es der Flügel von *Atractocerus*, welcher jede Verallgemeinerung unmöglich macht; denn würde man den Käferflügel so charakterisieren, dass auch *Atractocerus* mit einbezogen ist, dann hindert uns nichts, den Flügel von *Oligoneura* als Käferflügel zu bezeichnen. Dieses Beispiel zeigt, dass das Flügelgeänder zu einer scharfen Charakteristik der Ordnungen überhaupt unbrauchbar ist, dass man im besten Falle Familien oder Unterordnungen mit Hilfe desselben von einander trennen kann. Nach meiner Ansicht erhellt daraus aber auch unzweifelhaft, dass dem Flügelgeänder der Insecten ein gemeinsamer Plan zu Grunde liegt. Der Flügel von *Oligoneura* sowohl, als der von *Atractocerus* sind ohne Zweifel durch Anpassung und Reduction entstanden; wenn aber diese beiden Factoren in ganz verschiedenen Insectenordnungen so übereinstimmende Aderformen erzeugen, dann ist man wohl berechtigt zu schliessen, dass das ursprüngliche Material ein ähnliches gewesen sein muss, oder dass mit anderen Worten dem Flügel der Käfer und Ephemeren, sowie aller übrigen Insectenordnungen, ein ursprünglich gleichartiges Flügelgeänder zukommt. Wenn es in einzelnen Fällen nicht gelingt, die Homologie der Adern durchzuführen, ist dies nach meinem Dafürhalten noch kein genügender Grund, die morphologische Vergleichung der Adern verschiedener Insecten von vorneherein als unmöglich oder unwissenschaftlich zu bezeichnen. Es verhält sich eben mit dem Flügelgeänder der Insecten in vieler Beziehung ähnlich wie mit den Larven derselben;1) so wie diese ist auch das Flügelgeänder nur zur Charakteristik kleinerer Formenkreise, nicht aber ganzer Ordnungen verwendbar. Die Hemerobiden liessen sich ziemlich leicht charakterisiren, wenn nicht *Coniopteryx* etc. dies unmöglich machen würden. Aehnlich verhält es sich bei den Lepidopteren, Orthopteren s. str. u. s. w. Andererseits wird man das Flügelgeänder nie ausser Acht lassen können, wenn es sich darum handelt, die Verwandtschaft eines Insectes festzustellen. Auf Grund des Flügelgeäders lässt sich behaupten, dass die Mantiden den Blatttiden nahestehen, dass dagegen die Phasiden durch den Besitz des Präcostalfeldes viel mehr an die Locustiden erinnern; aus denselben Grunde stellt Brauer mit Recht *Eugereon Böckingii* zu den Mantiden. Ueberhaupt dürfte sich das Geänder in erster Linie als Hilfsmittel bei der Bestimmung fossiler Insecten verwenden lassen, da von denselben gewöhnlich die Flügel besser als andere Körpertheile erhalten sind und nicht selten sogar die Oberflächenlage der aufeinanderfolgenden Adern erkennen lassen. Da ferner die Flügel vieler Insecten (Dipteren, Hymenopteren etc.) offenbar aus viel reichlicher geadernten Formen hervorgegangen sind, bietet die Untersuchung des Geäders auch oft Gelegenheit zu entscheiden, welche von mehreren Insectenformen älter, d. h. der Stammform ähnlicher zu betrachten ist. Reiches Zwischengeänder, regelmässig alternirende Concav- und Convexzüge, sowie ein mächtig ausgebildetes Analfeld kennzeichnen die Flügel der ursprünglichen Formen, während alle jüngeren Insectengruppen ein spärliches Zwischengeänder, wenige und meist convexe Adern zeigen, wohingegen die concaven Adern meist durch Falten ersetzt erscheinen. So erweisen sich die Neuropteren und Orthopteren als geologisch älter als die Dipteren, Coleopteren etc., die Cicadinen und Fulgoriden älter als die Hemipteren; unter den Odonaten scheinen die Calopterygiden die Vorläufer der Libelluliden, Gomphiden und

Agrioniden zu sein; Pteronarcy's kann als Ausgangspunkt für die Perliden, Corydalis für die Sialiden gelten. Freilich wird man bei solchen Untersuchungen sich nicht auf das Geäder allein stützen dürfen, anderseits wird dasselbe aber stets ein wesentliches, ja geradezu unentbehrliches Hilfsmittel bilden.

I. Dermaptera.

Taf. IX Fig. 1—4.

Die Vorderflügel sind zu kurzen, hornigen Schuppen umgewandelt, die keine Nervatur erkennen lassen und an die Deckflügel der Blattiden, Termiten und Coleopteren erinnern; zur Flugbewegung untauglich, dienen sie als Schutzmittel für die darunter verborgenen Hinterflügel, welche durch ihre complicirte Faltung und Nervatur von denen aller übrigen Insecten abweichen.

Die Faltung dieses merkwürdig gebauten Hinterflügels erfolgt in drei Stadien. Das erste derselben besteht darin, dass der Fächer sich regelmässig zusammenfaltet und der Apicalheil des Flügels sich gleichzeitig mit der Spitze gegen die Flügelwurzel nach unten umschlägt. Hervorgerufen wird diese Faltung wahrscheinlich nur durch die Elasticität der Fächerstrahlen. Diese liegen nämlich im Ruhezustande parallel der Flügellinie, werden aber bei der Entfaltung des Flügels um 180° gedreht, wie man sich am besten an einem aus Papier verfertigten Modell überzeugen kann, und streben natürlich, sobald der Strecker am Flügel verschlafft, ihre ursprüngliche Lage wieder einzu-
nehmen. Vermöge ihrer S-förmigen Krümmung aber werden auch die Felder, welche sie durchlaufen, mitgedreht, so dass die concaven Falten alle gegen die Flügelbasis, die convexen dagegen nach der entgegengesetzten Seite zu liegen kommen. Die von den abgekürzten Fächerstrahlen durchlaufen Felder müssen sich selbstverständlich im
entgegengesetzten Sinne drehen. In zweiter Linie wirken die vollständigen Fächeradern auch insofern wie elastische Federn, als sie sowohl untereinander als auch mit dem Aussenrande der Nebenschuppe ziemlich fest verbunden sind und in der Ruhelage beinahe parallel laufen, während sie im ausgebreiteten Flügel unter einem deutlichen Winkel divergieren und sich demnach beim Falten des Flügels wieder parallel zu stellen suchen.

Da die Entfernung des Fächermittelpunktes von der Flügelwurzel viel kleiner ist als die Länge einer Fächerader, so muss der regelmässig zusammengelegte Fächer bei der gleichzeitigen Rückwärtsbewegung des Flügels am Seitenrande des Hinterleibes anstossen, was zur Folge hat, dass der vorstehende Theil des Fächers nach unten umgeschlagen wird, und zwar um eine Achse, welche durch die Flügelwurzel geht und parallel mit der zwischen Schuppe und Apicaltheil befindlichen Gelenksfalte verläuft. Selbstverständlich ist das Einschlagen des Fächerrandes nach unten nicht ohne Einfluss auf die dabei betroffenen Adern; dieselben zeigen vielmehr gerade an der Stelle, wo sie geknickt werden, eine horizont, verschwommene Erweiterung. Im dritten Stadium endlich schlägt sich das Flügelpaket noch einmal nach unten um längs der Furche, welche die Nebenschuppe in zwei Hälften theilt, und gleichzeitig wird auch der Apicaltheil, der schon im ersten Stadium auf die Nebenschuppe zurückgelegt wurde, der Länge nach zusammengefasst. Die Ursache zu dieser letzten Faltung ist vielleicht ebenfalls in dem Anstreifen des Flügels an den Hinterleib zu suchen; übrigens sollen die Forficuliden hiebei auch die Hinterleibsflügel in Anwendung bringen, was ich jedoch trotz mehrfacher Versuche nie beobachten konnte.

Die Faltung des Forficuliden-Flügels ist einzig in ihrer Art; ein Vergleich wäre hochstens mit dem Flügel mancher Blattiden (Eleutherodea) möglich, der sich ebenfalls der Länge und Quere nach zusammenlegt, doch wird hier der Spitzentheil des Flügels nach oben zurückgeschlagen und die Faltung des Fächers erfolgt genau so wie bei den übrigen Orthopteren.

II. Ephemeridae.

Taf. IX Fig. 5 und 6.

Im Vorderflügel erkennt man leicht hinter der concaven Subcosta den unverzweigten Radius, ebenso den gegabelten Cubitus; zwischen beiden entspringt eine Con- cavader, die sich bald in zwei Aeste theilt, von denen der vordere abermals gegabelt ist und einige Concav- und Convexadern einschliesst. Letztere sind als die abgekürzten
Sectoren des Radius, erstere als die Reste der zwischen ihnen verlaufenden concaven Fächerstrahlen aufzufassen, während kleinere Convexadern, die nur ein kurzes Stück saumeinwärts laufen, als Vereinigung von Queradern oder als Veneae spuriae anzusehen sind. Die hinter den Sectoren gelegene concave Gabelzinke entspricht demnach der IV. Ader, die vor dem Cubitus gelegene der VI. Convexader, und die zwischen ihnen eingeschlossene abgekürzte Convexader dem Ende der V. Ader.

Hinter dem Cubitus zeigt sich eine gegabelte Convexader mit eingeschlossener Convexader und kann als System der VIII. Ader bezeichnet werden, welche durch Vereinigung der beiden Convexzüge unter gleichzeitiger Auslöschung der eingeschlossenen Convexader zur Bildung einer scheinbar einfachen Convexader (wie bei manchen Lepidopteran) führen könnte. Die nächstfolgende Convexader sammelt ihren Zweigen entspricht der IX. Ader, hinter ihr folgt die X. Ader, die bald einfach concav ist (Ephemera), bald wie die VIII. Ader gegabelt erscheint (Heptagenia); die letzte Convexader ist die XI., und hinter ihr folgt manchmal noch eine Reihe von kleinen Convav- und Convexzügen, welche meist mehr oder weniger reduziert erscheinen.

Schon bei Polymiaryx virgo Pict. sind die Queradern äußerst feine Linien, bei Oligoneura endlich sind ihrer nur 5—7 zwischen Radius und V. Ader vorhanden. Das Analgeäder ist bei letzterer Gattung auf die einfache IX. und die gegabelte XI. Convexader reduziert und die Conchavader mit Ausnahme der Subcosta verschwunden.

Der Hinterflügel ist, wenn überhaupt vorhanden, stets viel kleiner als der Vorderflügel und demgemäß manchmal so reduziert, dass sein Geäder nur aus 2—3 schwachen Linien besteht.

III. Odonata.

Taf. IX Fig. 7—9.

Obwohl die Odonaten durch eine Reihe von Merkmalen, wie z. B. den Mangel der indirekten Flügelmuskeln, von allen übrigen Insecten scharf getrennt sind, so lassen sich doch eine Anzahl von Charakteren nachweisen, durch welche sie sich den echten Orthopteren und Perliden, namentlich aber den Ephemeren nähern. Direkte Uebergangsformen fehlen zwar vollständig, dennoch zeigt gerade das Flügelgeäder solche Aehnlichkeit mit dem der Ephemeren, dass man einen gemeinsamen Ursprung beider Ordnungen vermuten muss, umsörmehr, als die fossile Ephemera procera Hagen aus dem lithographischen Schiefer von Eichstadt durch ihre vier muthmasslich gleich grossen Flügel vielleicht eine Uebergangsform zu den Odonaten bildet. Auf jeden Fall stellen
die Odonaten (sowie die Ephemeren) eine Insectengruppe von hohem geologischen Alter dar, wie das Auftreten von angeblich gomphidenartigen Formen im Devon unzweifelhaft beweist. Auch der grosse Reichtum an Queradern, das häufige Auftreten von *Vanae spuriae*, und der geringe Grössen- und Formunterschied zwischen Vorder- und Hinterflügeln sprechen entschieden für diese Ansicht.

Ob gerade Gomphiden als die ältesten Formen der Odonaten anzusehen, scheint mir zweifelhaft, vielmehr glaube ich im Flügel der *Calopteryx*-Arten jene Form zu erkennen, von der sich die Flügliformen der übrigen Odonaten ableiten lassen, und welche deshalb zunächst besprochen werden soll.

berührt. Die XI. Ader ist bei *Thora* und *Hetaerina* nur ein Ast der IX., bei ersterer aber durch eine deutliche Conca\(v\)ader (X.) von ihr getrennt. Bei *Epallage* steht XI nicht in unmittelbarem Zusammenhange mit IX., und hinter ihr verläuft noch eine Conca\(v\)ader (XII.), bei *Rhinocypha* endlich fehlt XI vollständig. *Euphea*, *Anisopleura* zeigen einen ähnlichen Bau wie *Epallage*.

Dem breiten Flügel der Calopteryxigen gegenüber erscheint der der Agrioniden stark verschmälert; demgemäß hat auch eine entsprechende Reduction von concaven und convexen Längsader stattgefunden und die *Venae spuriae* sind fast vollständig ausgefallen. So erscheint der Sector radii ebenso wie die Media als einfache convexe Längsader, die nur am äußersten Ende von kleinen *Venae spuriae* begleitet ist. IV. und VI. Ader sind ein ziemlich langes Stück vereinigt, so dass die V. Ader bedeutend verkürzt ist. Die das Flügelviereck (Trapez) begrenzende äussere Querader nimmt durch ihre Stärke und schiefe Richtung schon mehr den Charakter eines Cubitalastes an, weshalb hier auch die VIII. Conca\(v\)ader, die bei den Calopterygiden noch vollständig gerade oder ganz wenig (*Rhinocypha*) gekrümmt verläuft, mehr oder weniger ausgebuchtet wird. Die IX. Ader steht mit der erwähnten hinteren Cubitalzunge oft derartig in Verbindung, dass sie selbst als eine Fortsetzung derselben erscheint. Nicht selten ist sie durch die Verschmälерung des Flügels mehr oder weniger reduziert, so dass sie bei *Agricenemis* und noch mehr bei *Disparoneura* stark verkürzt erscheint, bei *Palaminema* nur durch eine dreispaltige Querader repräsentiert ist, bei *Alloneura* endlich vollständig fehlt. Bei *Paraphlebia* zoë Selys. hingegen ist hinter der IX. noch die X. und XI. Ader ausgebildet. *Ischnura*, *Micromerus*, *Lestes*, *Synlestes*, *Platycnemis* und *Agriocnemis* zeigen im Wesentlichen denselben Bau wie *Agrion*.

Im Gegensatz zum Flügel der Agrioniden entsteht derjenige der Gomphiden, *Aeschynen* und *Libelluliden* durch Complication des Calopterygiden-Flügels in Folge einer Vergrösserung der Flügelbreite, namentlich am Grunde des Hinterflügels.

Der Flügel von *Gomphus* zeigt demnach ein dichtes Netzwerk von Adern, an dem jedoch die ursprünglichen Fächerstrahlen so innig mit einander verbunden und zickzackförmig gekrümmt erscheinen, dass sie sich nicht mehr so scharf wie bei den Calopterygien von einander sondern lassen, sondern ein mehr minder unregelmässiges Netzwerk bilden. Die IV. und VI. Ader sind eine bedeutende Strecke hindurch vereinigt, die V. Ader daher stark abgekürzt. Die Wurzel des Cubitus verläuft anfangs quer zur Längsaxe des Flügels, knickt aber dann bald unter einem rechten Winkel um. In seinem weiteren Verlaufe entsendet der Cubitus eine schiep nach hinten und gegen die Flügelbasis zu verlaufende Zinke, die offenbar aus einer abnorm entwickelten Querader hervorgegangen ist. Die darauffolgende VIII. Conca\(v\)ader wird dadurch ebenfalls rechtwinkelig geknickt und ist durch eine schiep, scheinbar concave Querader mit der Gabel des Cubitus verbunden, so dass die viereckige Zelle der Calopterygiden und Agrioniden in zwei Theile zerfällt, wovon der gegen den Hinterrand gelegene als »Flügeldreieck« bezeichnet wird. Einen ähnlichen Querast entsendet die darauffolgende IX. Ader in den Winkel von VIII.

Der Hinterflügel zeigt denselben Bau wie der Vorderflügel, mit dem einzigen Unterschied, dass bei ersterem das hinter IX gelegene Analfeld viel stärker entwickelt ist, und daher auch ein dichtes Netz von Längs- und Queradern zeigt. *Progomphus obscurus* Ramb. zeigt im Vorderflügel eine Spur einer XI. Ader, bei *Cordulega\(s\)ter* ist die V. Ader deutlich gegabelt und zeigt ebenso wie der Cubitus eine an beiden Enden abgekürzte Conca\(v\)ader.

Der Flügel der Aeschynen zeigt im Wesentlichen denselben Bau wie derjenige der Gomphiden. Die concaven Adern hinter der V. Ader und dem vorderen Cubitalast

Der Flügel der Cordulina ist ähnlich wie bei den vorhergehenden Abtheilungen gebaut; bei Cordulia ist insofern ein Unterschied erkennbar, als aus dem Stamm der IX. Ader im Hinterflügel noch eine kurze Concav- und eine Convexader entspringen, die vielleicht als Spuren der X. und XI. Ader anzusehen sind.

Nach demselben Typus ist endlich auch der Flügel der Libellulina gebaut. Der Stamm der vereinigten IV. und VI. Ader unterbricht nicht selten den Stamm des Cubitus, so dass derselbe in zwei Theile getrennt ist. Die IX. Ader ist bald gegabelt, bald einfach und meist hinter ihr noch eine Concavader (X.), manchmal sogar noch eine XI. Ader sichtbar (Libellula), bei Tetramethis dagegen ist die X. und XI. Ader nicht entwickelt. Nannophya, Nannothenis und Nannodythemia sind ähnlich gebaut wie Libellula.

Es liessen sich demnach drei Typen im Flügelgeäder unterscheiden: I. Der Typus der Calopterygiden, aus dem sich der II. Typus der Agrioniden durch Vereinfachung, der III. Typus der Gomphiden, Aeschiden, Corduliden und Libelluliden dagegen durch Complication unter gleichzeitiger Verbreiterung der Flügel entwickelt hat.

IV. Plecoptera (Perlariae).

Taf. X, Fig. 10—12.

Als typisch für die ganze Ordnung kann man den Flügel von Nemura ansehen, ohne dass damit gesagt sein soll, dass diese Gattung etwa den Urtypus der Perliden bilden soll. Es lässt sich im Gegenteil vermuten, dass Formen mit reicher entwickeltem
Geäder, wie z. B. *Pteronarcyx*, dem ursprünglichen Typus viel näher stehen, aus dem sich durch Vereinfachung und Reduction das Geäder der übrigen Perliden entwickelt hat.

Im Vorderflügel von *Nemura* erkennt man hinter der marginalen Costa die concave Subcosta, welche an einer Querader, die dem Nodus der Odonaten vergleichbar ist, aufhört. Eine zweite Querader ist an der Basis zwischen Costa und Subcosta sichtbar. Der Radius verläuft gerade bis zur Flügelspitze und entsendet nach rückwärts einen gegaebten Sector, der durch eine Querader sowohl mit dem Radius, als mit der darauf folgenden V. Ader verbunden ist. Diese entspringt aus dem Radius, entsendet gleich nach ihrem Ursprung eine Querader zum Sector radii und in ihrem weiteren Verlaufe eine Reihe von Queradern gegen den Cubitus, um sich am Ende in zwei Gabelzinken zu teilen. Unmittelbar vor ihr verläuft eine kurze Concavfurche, welche als Rest der IV. Ader anzusehen ist, während die VI. Concavader vollständig verschwunden ist.

Der Cubitus ist an der Wurzel ausgelöscht und teilt sich bald in zwei Aeste, die durch eine Reihe von Queradern miteinander in Verbindung stehen. Die VIII. Ader ist als deutliche Concavfurche unmittelbar hinter dem Cubitus sichtbar und durchbricht die Querader, welche die Wurzel des Cubitus mit dem reducirten Analfeld verbindet. Die IX. Ader bildet an der Wurzel eine elliptische Zelle, welche auf eine Vereinigung von zwei Aesten deutet, während sie im weiteren Verlaufe als einfache Convexader erscheint. Dicht hinter der elliptischen Zelle, und an der Wurzel sogar mit ihr vereinigt, entspringt die gegabelte XI. Ader, während die X. Concavader fehlt. — Der Hinterflügel zeigt denselben Bau wie der Vorderflügel, doch ist sein Analfeld zu einem deutlichen Fächer ohne Convexadern ausgebildet und die V. Ader entspringt aus dem Sector radii.

Bei *Chloroperla* entspringt die V. Ader im Hinterflügel aus dem Sector radii, ebenso bei *Perla, Dictyopteryx* und *Pteronarcyx*; hier scheint auch der Vorderast des
Cubitus aus dem Sector zu entspringen, da die Querader zwischen beiden ungewöhnlich kräftig ist.

Während Bronn und Scudder zwischen Pteronarcyus und Phasmiden eine Übereinstimmung des Flügelgeäders herausfinden, scheinen mir die Perliden vielmehr an die nahe verwandten Blattiden und Mantiden, sowie auch an die Embiden zu erinnern. Doch ist ihr Zwischengeäder mit Ausnahme von Pteronarcyus nur aus vereinzelten Queradern gebildet, und das Analfeld zeigt bei den Perliden weder die vielen Radien, noch die zahlreichen Queradern, welche die Fächer der genuinen Orthopteren charakterisieren.

Als charakteristisch kann auch das Verhalten des Sector radii und der V. Ader angesehen werden, die im Hinterflügel mit gemeinsamer Wurzel entspringen, während im Vorderflügel der Sector aus dem Radius, die V. Ader aber selbstständig dicht hinter oder aus dem Radius entspringt. Stets ist die V. Ader sowohl mit dem Radius, resp. seinem Sector, als auch mit dem Cubitus durch eine Querader verbunden, so dass eine deutliche Basalzelle eingeschlossen wird. Bei den meisten Perliden entsendet der vordere Cubitalast eine Reihe fiederförmig gestellter Queradern gegen die V. Ader sowohl als gegen den Hinterast. Im Vorder- und Hinterflügel ist die IV. und VIII. Ader als Concavfalte entwickelt, nur bei Pteronarcyus nimmt der hintere Cubitalast vollkommen den Charakter einer Concavader an. Die VI. Ader fehlt vollständig.

V. Orthoptera genuina.

Taf. X, XI und XII.

1. Fam. Embidae.

Taf. X, Fig. 13.

Die Vertheilung der Adern gleicht ungemein derjenigen der Perliden, denen die Embiden mit Ausnahme des reducirten Analfeldes wohl nahe stehen dürften. Der Ursprung des Sectors und seine Querader zur V. Längsader finden sich fast in derselben Weise bei den Perliden; die abgekürzten Adern in der Cubitalgabel des Hinterflügels von Embia würden dann den Aesten entsprechen, welche der hintere Cubitalast im Vorderflügel vieler Perliden nach vorne entsendet. Dagegen lassen sich ausser der hor nigen Beschaffenheit des Flügels und dem Mangel concaver Adern wenig Aehnlichkeits-

2. Fam. Blattidae.

Taf. X, Fig. 14—16.

Ohne Zweifel gehören die Blattiden zu den ältesten Insecten; ein angeblicher Vertreter derselben (Palaeoblattina) findet sich bereits im Silur.

Am hornigen Vorderflügel erkennt man nebst der marginalen Costa die tief concave, auf der Unterseite wulstig verdickte Subcosta, die schief gegen die Mitte des Vorderrandes verläuft und einige undeutliche, schiefe Zweige (Queradern) gegen den Vorderrand abgibt. Der Radius ist mit einer grossen Anzahl von Aesten (Sectoren) versehen, die ausnahmslos dem Vorderrande zustreben. Die nächste Ader ist concav, erlischt aber in der Mitte des Flügelfeldes, nachdem sie den Stamm der folgenden, mehrfach verzweigten V. Ader ausgelöscht hat. Sie ist demnach als IV. Ader oder als Verschmelzung der IV. und VI. Ader zu bezeichnen. Nun folgt der Cubitus, der sich in eine grosse Anzahl von Aesten teilt, und hinter diesem die concave VIII. Ader, die im Bogen gegen die Mitte des Hinterrandes verläuft und das Analfeld mit zahlreichen, der Längsachse des Flügels fast parallel verlaufenden Convexadern begrenzt. Im Hinterflügel mündet die Subcosta mehr gegen die Flügelspitze, weshalb der folgende, mehrfach verzweigte Radius auf einen kleineren Raum zusammengedrängt ist als im Vorderflügel. Unmittelbar hinter ihm zieht die erst am Ende gegabelte V. Ader, deren Wurzel von der darauffolgenden, glashell durchscheinenden Concavfalte (VI.) ausgelöscht ist. Der Cubitus ist reich verzweigt und nimmt ungefähr dieselbe Fläche ein als der Radius sammt der V. Ader; beide zusammen bilden etwas mehr als ein Drittel der ganzen Flügelfläche. Eine concave Ader (VIII) begrenzt das mit zarten, spärlichen Queradern versehene Analfeld und unmittelbar hinter ihr zieht eine undeutliche Convexader, welche wohl als ein mehr minder aufgelöster Ast der IX. Ader anzusehen ist. Längs derselben schlägt sich das fächerartige Analfeld nach unten und gegen den Vorderrand um, da aber das ganze Analfeld fast die doppelte Breite der vorderen Flügelpartie zwischen der I. und VIII. Ader hat, wird die hintere Hälfte des Analfeldes abermals nach hinten zurückgeschlagen, so dass der ganze Flügel in der Ruhelage aus drei übereinanderliegenden Blättern besteht. In der vorderen Hälfte des Analfeldes ist auch das Geäder insofern verändert, als die einzelnen Fächerstrahlen nicht wie in der hinteren Hälfte von einander getrennt, sondern
zu einer mehrfach verzweigten Ader vereinigt sind. Einen ganz ähnlichen Flügelbau zeigen *Ischnoptera morio* Burm. u. A.

Wo der Hinterflügel auch der Quere nach gefaltet wird, wie bei *Eleutherodea dytiscoides* Serv., ist natürlich die Deutung des Geäders bedeutend schwieriger, doch erkennt man die concave Subcosta und hinter ihr den von der Wurzel an gegabelten Radius, hinter dem die einfache V. Ader bis zur Flügelspitze verläuft. Unmittelbar hinter dieser zieht an der Wurzel eine concave Falte, sowie der anfangs einfache, im Spitzentheil aber gegabelte Cubitus, der durch eine concave Ader vom Analfeld getrennt ist. Dieses zerfällt wieder in eine vordere Partie mit kräftigen, durch zahlreiche Queradern verbundenen Längsadern und in einen hinteren fächerförmigen Theil mit spärlichen, zarten Queradern. Bei der Faltung legt sich der Hinterflügel einmal der Länge nach zusammen und gleichzeitig schlägt sich der Analfächer nach unten um, worauf endlich der Spitzentheil des Flügels sich nach oben gegen die Flügelbasis zurücklegt.

Charakteristisch für die Blattadernflügel sind die marginale *Costa*, die abgekürzte, in die Mitte des Vorderrandes mündende Subcosta und die im Bogen gegen die Mitte des Hinterrandes laufende VIII. Ader. Vorderflügel mit Ausnahme der Concaudavren, die im durchfallenden Lichte als helle Streifen erscheinen, verhornt, ebenso der Hinterflügel bis zur VIII. Ader, während der Analfächer häufig und glashell bleibt. Queradern sind zwar in ziemlicher Anzahl vorhanden, aber undeutlich und fein. Das Analfeld des Vorderflügels ist stets von mehreren Adern durchzogen, welche entweder gerade oder im Bogen parallel der Längsachse des Flügels verlaufen, wodurch die Blattadern ungemein an die
Mantiden erinnern; doch fehlt jenen die für letztere charakteristische Membranula des Analfeldes ausnahmslos. Die V. Ader entspringt selbstständig, aber mit ausgelöschter Wurzel, nur manchmal verschmilzt sie mit dem Radius. Ausser der Subcosta und Analader findet sich von concaven Linien noch die VI. als Falte oder Ader ausgebildet, nicht selten mit der IV. vereinigt.

3. Fam. Mantidae.

Taf. X, Fig. 17.

Wie die Mantiden durch Kopf, Hinterleib, Eierablage etc. an die Blattiden erinnern, so lassen sich auch im Flügelgeäder eine Reihe von Merkmalen feststellen, durch welche beide Familien mit einander verwandt sind. Als Beispiel möge *Mantis* dienen. Die Costa verläuft wie bei Blattiden marginal, dagegen erreicht hier die Subcosta die Flügelspitze und in Folge dessen erscheint der Radius nur spärlich und am äussersten Ende verzweigt. Eine seichte Concavfurche dicht hinter dem Radius trennt ihn von der mehrfach gegabelten V. Ader, welche wieder durch eine kurze, undeutliche Furche vom reich verästelten Cubitus getrennt ist. Als eine Wirkung jener beiden Falten, die der IV. und VI. Concavader entsprechen, müssen die eigenthümlichen, weissen Flecken angesehen werden, die bei vielen Mantiden etwa in der Mitte der V. Ader liegen und offenbar den Thyridien der Panorpen und Trichopteren entsprechen. Hinter dem Cubitus verläuft die concave VIII. Ader wie bei den Blattiden im Bogen gegen den Hinterrand. Auch das Analfeld ist dem der Blattiden ähnlich, doch fehlt denselben die Membranula der Mantiden. Die IX. Ader beginnt mit zwei Aesten, die sich vor dem Hinterrande vereinigen und auch die concave VIII. Ader aufnehmen. Die nächste gegabelte Ader wäre als XI., die beiden folgenden als XIII. anzusehen. — Im Hinterflügel erkennt man wieder die concave Subcosta, hinter ihr den unverzweigten Radius und die ihm parallel laufende, ebenfalls einfache V. Ader, welche durch eine Concavader (VI.) vom mehrfach gegabelten Cubitus getrennt ist. Hinter diesem verläuft abermals eine Concavader (VIII.), auf welche das fächerförmige Analfeld folgt. Wie bei den Blattiden ist die erste Fächerader einfach, hinter ihr aber verläuft eine wiederholt gegabelte Ader, welche durch Vereinigung von mehreren Fächerstrahlen entstanden ist. Zwischen je zwei Adern eine concave Falte. Der Vorderflügel zeigt ausser den normalen Adern noch eine Reihe von eingeschalteten, abgekürzten Convexadern, die wohl als *Venae spiniae* zu deuten sind, wie sie bei den Ephemereniden und Odonaten so häufig auftreten.

Eigenthümlich sind die breiten, dreieckigen, netzförmig geadernten Seitenfortsätze des Pronotums von *Choraedodis boidea* Stoll., die sich auch bei *Lithomantis carboaria* finden.

Der selbstständige Ursprung der V. Ader, die Bildung des Cubitus, sowie der Bau des Analfeldes und die marginale Costa sind Merkmale, wodurch sich die Mantiden entschieden den Blattiden nähern. Von concaven Adern treten in beiden Familien nur die Subcosta und Analader regelmässig auf, während die VI. Ader oft nur durch eine Falte angedeutet ist, die IV. Ader meist gänzlich fehlt. Auch zu den Perliden ergaben sich Beziehungen. Von diesen sowohl als von den Blattiden weichen die Mantiden dadurch ab, dass der Sector radii entweder ganz fehlt oder wenigstens verkümmert ist, die V. Ader
demnach fast parallel dem Radius verläuft; von den Blattiden speziell aber unterscheiden sie sich durch den Besitz der Membranula und durch die bis zur Flügelspitze gehende, gerade Subcosta.

Taf. X, Fig. 18; Taf. XI, Fig. 19 und 20.

Wieder eine etwas andere Gestalt zeigt der Deckflügel von Phyllium, der in Folge einer Art von Mimikry die Form von fiedernervigen Blättern nachahmt. Man erkennt wieder im Präcostalfeld die schief nach vorne verlaufende Costa, während die Subcosta fehlt; ebenso hat auch die folgende Ader, die ich für den Radius halte, sammt ihrem Hinteraste, der V. Ader, die Neigung, gegen den Vorderrand zu verlaufen. Dann folgt eine in der Längsachse des Flügels verlaufende concave Furche (VI) und hinter ihr der Cubitus, der die Mittelrippe des scheinbaren Blattes bildet und am Ende sich in vier, ebenfalls schiefe nach vorn verlaufende Aeste teilt. Im Analfeld, welches relativ schmal erscheint, laufen wieder wie bei Prisopus die abgekürzte, schiefe IX. und XI. Ader.
Mantiden erinnern; doch fehlt jenen die für letztere charakteristische Membranula des Analfeldes ausnahmslos. Die V. Ader entspringt selbstständig, aber mit ausgelöschter Wurzel, nur manchmal verschmilzt sie mit dem Radius. Ausser der Subcosta und Analader findet sich von concaven Linien noch die VI. als Falte oder Ader ausgebildet, nicht selten mit der IV. vereinigt.

3. Fam. Mantidae.

Taf. X, Fig. 17.

Wie die Mantiden durch Kopf, Hinterleib, Eierablage etc. an die Blattiden erinnern, so lassen sich auch im Flügelgeäd eine Reihe von Merkmalen feststellen, durch welche beide Familien mit einander verwandt sind. Als Beispiel möge Mantis dienen. Die Costa verläuft wie bei Blattiden marginal, dagegen erreicht hier die Subcosta die Flügelspitze und in Folge dessen erscheint der Radius nur spärlich und am äussersten Ende verzweigt. Eine selbte Concavfurche dicht hinter dem Radius trennt ihn von der mehrfach gegabelten V. Ader, welche wieder durch eine kurze, undeutliche Furche vom reich verästelten Cubitus getrennt ist. Als eine Wirkung jener beiden Falten, die der IV. und VI. Concavader entsprechen, müssen die eigenthümlichen, weisslichen Flecken angesehen werden, die bei vielen Mantiden etwa in der Mitte der V. Ader liegen und offenbar den Thyridien der Panorpiden und Trichopteren entsprechen. Hinter dem Cubitus verläuft die concave VIII. Ader wie bei den Blattiden im Bogen gegen den Hinterrand. Auch das Analfeld ist dem der Blattiden ähnlich, doch fehlt denselben die Membranula der Mantiden. Die IX. Ader beginnt mit zwei Aesten, die sich vor dem Hinterrande vereinigen und auch die concave VIII. Ader aufnehmen. Die nächste gegabelte Ader wäre als XI., die beiden folgenden als XIII. anzusehen. — Im Hinterflügel erkennt man wieder die concave Subcosta, hinter ihr den unverzweigten Radius und die ihm parallel laufende, ebenfalls einfache V. Ader, welche durch eine Concavader (VI.) vom mehrfach gegabelten Cubitus getrennt ist. Hinter diesem verläuft abermals eine Concavader (VIII.), auf welche das fächerförmige Analfeld folgt. Wie bei den Blattiden ist die erste Fächerader einfach, hinter ihr aber verläuft eine wiederholt gegabelte Ader, welche durch Vereinigung von mehreren Fächerstrahlen entstanden ist. Zwischen je zwei Adern eine concave Falte. Der Vorderflügel zeigt ausser den normalen Adern noch eine Reihe von eingeschalteten, abgekürzten Convexadern, die wohl als Venae spuriae zu deuten sind, wie sie bei den Ephemeriden und Odonaten so häufig auftreten.

Eigenthümlich sind die breiten, dreieckigen, netzförmig geadernten Seitenfortsätze des Pronotums von Choraedodis boidea Stoll., die sich auch bei Lithomantis carbonaria finden.

Der selbstständige Ursprung der V. Ader, die Bildung des Cubitus, sowie der Bau des Analfeldes und die marginale Costa sind Merkmale, wodurch sich die Mantiden entschieden den Blattiden nähern. Von concaven Adern treten in beiden Familien nur die Subcosta und Analader regelmässig auf, während die VI. Ader oft nur durch eine Falte angedeutet ist, die IV. Ader meist gänzlich fehlt. Auch zu den Perliden ergaben sich Beziehungen. Von diesen sowohl als von den Blattiden weichen die Mantiden dadurch ab, dass der Sector radii entweder ganz fehlt oder wenigstens verkümmert ist, die V. Ader
demnach fast parallel dem Radius verläuft; von den Blattiden speziell aber unterscheiden sie sich durch den Besitz der Membranula und durch die bis zur Flügelspitze gehende, gerade Subcosta.

Taf. X, Fig. 18; Taf. XI, Fig. 19 und 20.

Wieder eine etwas andere Gestalt zeigt der Deckflügel von Phyllium, der in Folge einer Art von Mimikry die Form von fiederartigen Blättern nachahmt. Man erkennt wieder im Präcostalfeld die schief nach vorne verlaufende Costa, während die Subcosta fehlt; ebenso hat auch die folgende Ader, die ich für den Radius halte, sammt ihrem Hinteraste, der V. Ader, die Neigung, gegen den Vorderrand zu verlaufen. Dann folgt eine in der Längsachse des Flügels verlaufende concave Furche (VI.) und hinter ihr der Cubitus, der die Mittellippe des scheinbaren Blattes bildet und am Ende sich in vier, ebenfalls schief nach vorne verlaufende Aeste theilt. Im Analfeld, welches relativ schmal erscheint, laufen wieder wie bei Prisopus die abgekürzten, schiefen IX. und XI. Ader.

5. Fam. *Saltatoria*.

a. Gryllodeae (Taf. XI, Fig. 21 und 22): Durch das Geäder der Flügel, durch die Verwendung des Analfeldes als Stimmorgan und durch andere Merkmale erscheinen die Gryllodeen am nächsten mit den Locustiden verwandt, mit denen sie auch durch Uebergangsformen (*Gryllacris*) verbunden sind. Am einfachsten stellt sich das Geäder bei *Oecanthus* und ähnlichen Formen dar, weshalb jene Art als Typus dienen möge.

feld erkennt man leicht die Costa, die mit dem Radius durch eine kleine Querader in Verbindung steht, während dieser wieder durch eine Querader mit der ebenfalls unverzweigten V. Ader verbunden ist. Nun folgt die als VI. zu deutende Concavfalze und hinter ihr der einfache Cubitus, so dass der eigentliche Tonapparat blos von der IX. Ader gebildet wird. Diese lauft nämlich von der Flügelbasis schief zum Hinterrand, bildet das selbst eine knotenartige Verdickung und wandert sich plötzlich wieder gegen den Cubitus, mit dem sie ein kurzes Stück vereinigt läuft und ein dreieckiges Feld (harpa) begrenzt, in dem einige kleine, unregelmässige Adern, sowie eine rechtwinkelig geknickte Concvader (VIII), die parallel mit IX verläuft, sichtbar sind. Ausserhalb der IX. Ader erkennt man ein eiförmiges Feld (Tympanum), welches von drei schieben Asten der IX. Ader durchzogen ist und von zwei parallel im Bogen verlaufenden Radadern, die ebenfalls Aeste von IX darstellen, begrenzt wird.

Im Hinterflügel fehlt das Präcostalfeld, die Costa lauft also marginal und unmittelbar hinter ihr die Subcosta und der unverzweigte Radius. Mit blinden Wurzel entspringt die dreizinkige V. Ader und hinter ihr der fast von der Basis an gegabelte Cubitus, zwischen dessen beiden Asten die Flügelhaut etwas hornig verdickt ist. Nun folgen eine abgekürzte Concavader (VIII), die gegabelte IX. Ader und der übrige Theil des Analfächers, zwischen dessen Strahlen je eine abgekürzte Concavader eingeschaltet ist. Queradern finden sich zwischen je zwei Aesten, jedoch nicht in übergrosser Anzahl.

Der Deckflügel des Männchens von Cachoplusius Rogenhoferi Sauss. ist ganz nach dem Typus von Gryllus geader, mit dem einzigen wesentlichen Unterschiede, dass die submarginalen Costa nicht einmal die Hälfte des Flügels an Länge erreicht und schief gegen den Vorderrand verläuft, dafür aber die Subcosta als concave Ader ausgebildet ist. Wie bei Gryllus erscheint das harfenförmige Feld verhältnismässig kurz und breit, das Tympanum mehr rundlich als bei Oecanthus.

Im Hinterflügel ist die Costa marginal, dafür die Subcosta stets entwickelt, der Radius einfach und stark verhornt, ebenso der gegabelte Cubitus, während die V. Ader aus mehreren feinen Zweigen zusammengesetzt ist. Der Analfächer ist im Hinterflügel stark ausgebildet, aus convexen Adern und dazwischen eingeschalteten, mehr minder abgekürzten Concavadern zusammengesetzt. Im Ruhezustande werden die Hinterflügel fächerartig gefaltet und ausserdem spiralg eingerollt, so dass sie als hornige Spitzent unter den Deckflügeln hervorragen.

Die Gryllodeen dürfen den Locustiden am nächsten stehen, unterscheiden sich aber von ihnen im Geäder, namentlich dadurch, dass im Vorderflügel des Weibchens alle Convexadern dicht nebeneinander in paralleler Richtung gegen die Flügelspitze ziehen und vorne und hinten das dicht geäderte Präcostal-, resp. Analfeld frei lassen. Die Analader geht demnach auch hier nicht zum Hinterrande, sondern zur Flügelspitze; doch ist sie meist nur durch eine Falte angedeutet. Beim Männchen entwickelt sich das Analfeld viel kräftiger als das Präcostalfeld und wird zum unregelmässig geäderten Stimmapparat. Die V. Ader entspringt in beiden Flügeln frei, Radius und Cubitus sind im Hinterflügel mehr minder verhornt.

b. Locustidae (Taf. XI, Fig. 23 und 24; Taf. XII, Fig. 25—30): Durch das Springvermögen, den Bau der Abdominalanhänge etc. schliessen sich die Locustiden am nächsten an die Gryllodeen. Der Habitus der Gryllodeen ist am meisten von Gryllacris und einigen verwandten Gattungen nachgeahmt, welche auch im Flügelgeäder von den echten Locustiden etwas abweichen. Die Costa verläuft bei Gryllacris submarginal, schieff gegen die Mitte des Vorderrandes. Die Subcosta ist deutlich ausgebildet, und unmittelbar hinter ihr verläuft der am Ende mehrfach verzweigte Radius. Die V. Ader entspringt als hinterer Ast des Radius und teilt sich ebenfalls am Ende in mehrere Zweige. Die nächste Ader ist concav und als VI. zu deuten, dann folgt der Cubitus, von der Mitte an in mehrere Aeste getheilt, und hinter ihm die concave VIII. Ader. Das Analfeld zeigt die vom Grunde an getheilte IX., sowie die gegabelte XI. Ader. Im Hinterflügel verläuft die Costa marginal, hinter ihr die Subcosta und der am Ende gegabelte Radius, aus dem die mehrfach verzweigte V. Ader entspringt, deren Stamm jedoch theilweise concav erscheint und sich am Grunde als concave Ader fortsetzt. Diese Concavader, welche die V. Ader quer durchsetzt, muss demnach aus zwei Stücken zusammengesetzt sein, von welchen das basale hinter V liegt und als VI anzusehen ist, während das äussere Stück derselben die IV. Ader darstellt, welche dem Stamm der V. so nahe gerückt ist, dass sie denselben mit Ausnahme der Aeste verdrängt. Die Wurzel dieser V. Ader erscheint als schiefe, gegen den Radius verlaufende Querader. Die hinter V laufende Ader ist convex und als gegabelter Cubitus anzusehen, dessen Vorderast am Grunde ausgelöscht ist und sich dann mit dem Hinterrast vereinigt. Dann folgt die concave VIII. Ader und der aus abwechselnden Convex- und Concavadern zusammengesetzte Analfächer.1)

1) In manchen Punkten ist meine Deutung des Flügelgeäders nicht ganz sicher, vielleicht sogar unrichtig, da mir zur Untersuchung nur Exemplare mit zerknitterten Flügeln vorlagen.

Der Flügel der Phanéropteriden stimmt im Wesentlichen mit dem von Locusta, Platycleis etc. überein. Im Vorderflügel legt sich die Costa dicht an die Subcosta an, so dass das Ende der letzteren convex erscheint. Der letzte Sector radii ist am Ende verzweigt, dafür aber verläuft die V. Ader ohne stärkere Zweige; der Cubitus erscheint einfach. Im Hinterflügel legt sich der Vorderast des Cubitus nicht bloß an die Aeste der V. Ader an, wie bei Platycleis, sondern durchsetzt dieselben sogar in schiefer Richtung bis zur Flügelspitze. Bei Meronidius nimmt der Vorderast des Cubitus das Ausschneiden einer schieben Querader gegen die V. Ader an. — Hier sowohl als bei Arantia erscheint die gemeinsame Wurzel von V und VII fast concav, offenbar durch die verschlossene IV. und VI. Conca vader unter das Flügelniveau hinuntergedrückt.

Einen etwas abweichenden Typus bildet Aicera euryseclus Scaum. durch die gewundene Costa, sowie dadurch, dass die V. Ader im Vorderflügel als separater Stamm aus der Flügelwurzel entspringt, anfangs dicht hinter dem Radius verläuft, dann aber sich in zwei stärkere, schieb nach hinten ziehende Aeste teilt. Hinter dem mehrfach verästelten Cubitus und der concaven VIII. Ader erkennt man die einfache IX. Ader,

Phyllophora media Wlk. weicht insofener ab, als durch Aneinanderlagerung von Costa und Radius die Subcosta wie bei *Moristus* vollkommen unterdrückt wird.

Wie bei den Grylloidea sind auch bei den männlichen Locustiden die Flügeldecken zum Stimmapparat geworden, und wie bei jenen ist auch hier das Analfeld dazu umgewandelt worden. *Thamnotrizon* zeigt den extremsten Fall, da hier der Flügel durch Reduktion ausschliesslich die Function eines Töninstrumentes übernommen hat, während gleichzeitig die Hinterflügel vollkommen verkümmert sind.

Beide Deckflügel stellen runderliche Schuppen dar, welche am Aussenrande zuerst eine concave Furche als Rudiment der Subcosta, dann drei kräftige, am Ende unregelmässig und dicht netzartig verzweigte Convexstämme erkennen lassen. Letztere stellen den Radius, die V. Ader und den Cubitus dar und sind durch eine concave Falte vom Analfelde getrennt. Die IX. Ader lauft, ungefähr parallel dem Cubitus, im Bogen gegen den Hinter- (Innen-) Rand und gibt nach hinten zwei Aeste ab, die sich im Bogen wieder mit der Hauptader vereinigen, so dass sie ein rundliches oder polygonales Feld einschliessen, welches auf dem linken Flügel unregelmässig geader, auf dem rechten dagegen glashell erscheint. Jene beiden Aeste sind auf dem rechten Flügel zart, auf dem linken aber, besonders der gegen die Flügelbasis zu gelegene, stark verdickt und letzterer ausserdem auf der Unterseite fein gerippt, so dass er gewissermassen als Fidelbogen erscheint, während der erhabene Rand des glashellen Feldes auf dem rechten Flügel als Saite dient. Am Grunde ist endlich auch die XI. Ader, wenn auch nur unbedeutend, erkennbar. Bei den übrigen Locustiden ist im Wesentlichen der Stimmapparat nach demselben Plane angelegt wie bei *Thamnotrizon*.

wendet, im Hinterflügel als Fächer ausgebildet und aus abwechselnden Concav- und Convexadern zusammengesetzt; von letzteren sind namentlich die vordersten häufig verdickt, erstere oft abgekürzt oder durch Falten ersetzt. — Concave Adern sind ausser der Subcosta und VIII. Ader in der Regel nicht ausgebildet oder durch Falten ersetzt, nur bei Akicer a und einigen anderen Arten sind je zwei Convexadern durch eine mehr minder abgekürzte Concavader getrennt. Zwischengeänder im Vorderflügel und theilweise auch im Hinterflügel (Phaneroptera) dicht, netzartig, unregelmässig.

c. Acrididae (Taf. XII, Fig. 31—34): Wenn auch die Locustiden sich von den Acridern durch die Fühler, den Bau des Stimmapparates, sowie durch die Legeröhre des Weibchens und andere Merkmale leicht unterscheiden lassen, zeigt doch das Flügelgeäder eine solche Aehnlichkeit, dass sich in dieser Beziehung eine scharfe Grenze nicht ziehen lässt. Gerade die Gattungen Bulla und Pneumora, die durch ihren Zirnpapparat und den Mangel des Sprungvermögens von den übrigen Acridern scharf getrennt sind, zeigen ein Geäder, wie wir es auch bei Akicera und anderen Locustiden finden. Bei Bulla verläuft die Costa in schiefser Richtung durch das deutlich entwickelte Präcostalfeld. Hinter der concaven Subcosta lauf der Radius, am Ende in mehrere Aeste geteilt, und dicht neben ihm die gegabelte V. Ader, während der Cubitus als einfache Ader gegen den Hinterrand zieht. Möglicherweise ist jedoch sein Hinterast durch die darauf folgende Concavader (VIII) ausgelöscht worden. Das Analfeld zeigt die einfache IX. und XI. Ader. Im Hinterflügel fehlt das Präcostalfeld; hinter der Subcosta lauf der am Ende mehrfach geteilte Radius, der an seiner Wurzel mit der gegabelten V. Ader verwachsen ist, die bei den meisten Locustiden mit dem Cubitus an der Wurzel vereinigt ist. Dieser ist wie im Vorderflügel einfach, hinter ihm die concave VIII. Ader, auf welche der Analfächer folgt, der aus zahlreichen Convexadern und dazwischen eingeschalteten, undeutlichen Convexadern besteht. Wie bei den Locustiden sind auch hier die drei ersten Convexadern inniger miteinander verbunden und besonders die mittlere derselben stärker verdickt; sie durchziehen ein Feld, welches sich nach vorne umschlägt, während der übrige Theil des Analfeldes fächerartig nach rückwärts zusammengelegt wird.

bilden eine Ausnahme, indem nicht die Flügelerippen, sondern gezähnelte Chitinleisten an den Seiten des blasenförmig aufgetriebenen Hinterleibes von den Hinterfüßen gestrichen werden.

VI. Corrodentia.

Taf. XII, Fig. 35—38.

falte aufgelöst, und im Cubitus legt sich der hintere Gabelast eine kurze Strecke an den dreizinkigen vorderen Ast an, so dass eine viereckige Zelle zwischen den beiden Cubitalästen abgeschnitten wird. Bei *Thysanoptera pennicornis* Burm. erscheint diese Zelle unregelmäßige und dicht netzartig geädert.

VII. Thysanoptera.

Diese Gruppe, von Brauer als eigene Ordnung betrachtet, besitzt schmale, lange, am Rande gewimperte Flügel, die entweder gar keine oder nur vereinzelte Adern besitzen und daher eine sichere Deutung unmöglich machen.

VIII. Rhynchota.

A. Homoptera.

Taf. XIII, Fig. 39—43.

hinteren, einfachen Theile. Im Hinterflügel fehlt die Subcosta, der Cubitus ist viel mäch-
tiger ausgebildet als bei Fulgora, die VIII. und X. Ader deutlich concav. Die beiden
Aeste der IX. Ader sind eine Strecke an der Wurzel vereinigt, die XI. Ader bildet erst
am äussersten Ende eine kleine Gabel, und ihr Stamm ist durch die concave X. Ader
zum Theil oblitterirt. — Poioecera, Poeciloptera, Pochaia, Nephesa, Phricthus, Glado-
diptera und Pseudophana zeigen ebenfalls das Geäder von Fulgora mit untergeordneten
Abweichungen. Die Subcosta ist Allen verloren gegangen, sowohl im Vorder- als im
Hinterflügel. Bei Phricthus zeigt der zweite, reich verzweigte Längsstamm im Vorder-
flügel den Bau der V. Ader von Fulgora und Cenestra, so dass dann als Cubitus die ein-
fache vor VIII verlaufende Convexader anzusehen ist. Bei Poioecera scheinen V. Ader
und Cubitus aus gemeinsamer Wurzel zu entspringen und legen sich auch mit ihren
Aesten so aneinander, dass es schwer hält, beide von einander zu trennen, dagegen ist
der Radius scharf von ihnen gesondert und nur durch eine kräftige Querader am Grunde
mit ihnen verbunden. Bei Phricthus und Gladoptera ist die IX. Ader im Hinterflügel
einfach, die XI. dagegen wie bei Fulgora von der Wurzel an in zwei Aeste getheilt. —
Cixius, Otioecus und Derbe lassen die drei Stämme des Radius, der V. Ader und des
Cubitus sowohl im Vorder- als im Hinterflügel leicht erkennen. Die V. Ader ist hier am
reichsten verzweigt und durch concave Furchen vom Radius sowohl als vom Cubitus
trennt. Die Subcosta fehlt, die Analader deutlich ausgebildet. Der Hinterflügel erscheint
bei Otioecus und Derbe, theilweise auch bei Cixius reducir und demgemäss alle
Convexadern schwach verästelt, die IX. Ader meist einfach und der XI. sehr nahe
gerückt, so dass die dazwischen liegende X. Ader entweder ganz fehlt oder nur durch
eine Convavalte ersetzt ist. — Sowohl bei Phricthus als bei Fulgora entspringt vom
Ende der VIII. Ader eine eigenthümliche, fast concav erscheinende Falte, welche unter
S-förmiger Krümmung quer gegen den Vorderrand zieht. Bei Pseudophana, Derbe und an-
deren Gattungen fehlt sie und dürfte als eine Verbindung von Queradern anzusehen sein,
wie sie auch bei Panorpen, namentlich aber im Vorderflügel der Trichopteren erscheint.

2. Cercopina. Im ziemlich stark verhornten Oberflügel von Aphrophora erkennt
man dicht hinter dem Vorderrande eine seichte Furche als Spur der Subcosta und die
tief eingeschnittene, gegen den Hinterrand verlaufende VIII. oder Analader. Zwischen
beiden ziehen zwei Convexstämme, von denen der erste dem Radius sammelt Sector, der
zweite dem Cubitus mit der V. Ader entspricht, welche als einfacher Ast aus demselben
entspringt, während dieser am Ende eine kleine Gabel bildet. Der Radius ist mit seinem
Sector, dieser mit der V. Ader und diese wieder mit dem Cubitus durch eine Querader
verbunden. Hinter der Analader und parallel mit ihr zieht die einfache IX. Ader, welcher
noch die abgekürzte XI. folgt. Im Hinterflügel läuft dicht hinter dem ausgebuchten
Vorderrande der Radius, der bald nach seinem Ursprung einen Sector abgibt. Dieser
steht durch eine Querader mit der einfachen V. Ader, und diese wieder durch eine Quer-
ader mit dem am Ende gegabelten Cubitus in Verbindung. Nun folgen die concave
VIII. Ader, eine von der Mitte an gegabelte Convexader (IX.), dann eine Convavalte als
Rest der X. Ader, endlich die einfache XI. Ader und eine kurze Convavurche als rudimen-
täre XII. Ader. Die I. bis IX. Ader erreichen den Flügelsaum nicht, sondern sind
vor demselben durch eine aus Queradern zusammengesetzte Randader vereinigt. Cer-
copis und andere Gattungen zeigen kaum nennenswerte Abweichungen. — Die S-förm-
mige Falte im Vorderflügel fehlt.

3. Cicadina. Convavadern fehlen scheinbar im Vorderflügel von Zammara voll-
ständig. Unmittelbar vor dem Radius aber verläuft eine in der Mitte des Vorderrandes
verschwindende Ader, welche zwar scheinbar convex ist, die ich aber dennoch für die

Annalen des k. k. naturhistorischen Hofmuseums, Bd. I, Heft 3, 1886.

Bei Cicada imperatoria Westw. u. a. laufen von der Randader ringsum noch kleine Aedern gegen den Flügelsaum, während sonst in der Regel nur feine glänzende Linien an ihrer Stelle sichtbar sind.

Die oben erwähnte S-förmige Linie, welche eine Durchbrechung oder Verwerfung der von ihr getroffenen Längsadern bewirkt, ist bei Bacca Serv., Polyneura Westw., Platypheura Serv. und anderen Gattungen durch eine geschwungene Folge von erhobenen Queradern repräsentirt, während die Fulgoriden an dieser Stelle nur eine concave oder convexte Falte zeigen. Sowohl bei letzteren als bei Cicadinen ist häufig der Flügel innerhalb dieser S-förmigen Linie anders gefärbt als ausserhalb derselben. So ist z. B. Hemisciera maculipennis Lap. an der Basis der Vorderflügel grün, im apicalen Theile dagegen roth gefärbt.

B. Phytophthires.

Taf. XIII. Fig. 44, 45.

C. Heteroptera.

Taf. XIII, Fig. 46—51; Taf. XIV, Fig. 52—55.

Die merkwürdigsten Formen kommen wohl im Vorderflügel der Plataspiden vor, da dieselben mehr oder weniger gefaltet und eingeschlagen werden können, was begreiflicherweise nicht ohne Einfluss auf den Verlauf der Adern sein kann. Im Hinterflügel von Plataxis coccinelloides Lap. sind Costa und Radius zu einer dicken, am Ende oft knopfartig verdickten Längsader vereinigt, deren Ende als blasse Ader im Bogen gegen die Flügelspitze verläuft. Durch eine concave Furche vom Radius getrennt, verlaufen zwei divergierende Längsadern, von denen die vordere am Ende unter S-förmiger Krümmung der hinteren sich nähert. Eine grosse, bogenförmig geschwungene Querader verbindet diese beiden Stämme, die zusammen die V. Ader darstellen. Zwischen zwei Convexfurchen, die in einspringenden Winkeln endigen, ist eine abgekürzte Convexader sichtbar, welche neben der vorderen Convexfurche verläuft und als verkümmertes Cubitus zu bezeichnen ist, während die beiden Falte die VI. und VIII. Ader vertreten. Nun folgt eine gegabelte Convexader (IX) und eine einfache, welche die XI. Ader darstellt. Zwischen beiden verläuft eine Falte, die in einen einspringenden Winkel mündet und
als Rest der X. Ader anzusehen ist. Ganz ähnlich ist das Geäder bei den übrigen Plata-
spiden. Bei *Coptosoma cribrarium* Fab. ist der zweite Ast der V. Ader durch die con-
cave VI. in der Mitte ausgelöscht, so dass nur sein Wurzel- und Endstück vorhanden
ist. Der Cubitus ist bei dieser Art ganz obliteriert. Bei *Calliphora nobilis* F. verbindet
eine schiefe Querader V mit dem Radius, ist aber durch die hinter dem letzteren ver-
laufende Concavfalte durchbrochen. Der Hinterast der V. Ader ist hier nur im Endstück
vorangehend, dagegen der Cubitus deutlich als gegabelte Ader ausgebildet. Bei *Chlaeno-
coris* ist der Vorderast von V geknickt und mit dem blassen Endtheile des Radius in
Verbindung getreten, der hintere Ast derselben dagegen verschwunden. Der Cubitus auf
eine kurze Strichel reduziert.

Denselben Bau des Hinterflügels zeigen die Eurygastriden und Pentatomiden, wie
Rhaphigaster, Pentatoma etc. Der hintere Ast der V. Ader ist hier häufig, wie bei *Chlae-
nocoris*, vollständig verschwunden, die Querader aber als S-förmiger Zweig des vor-
deren Astes ausgebildet, der an der Stelle, wo die Querader abzweigt, eine mehr minder
tiefe Einbuchtung zeigt. Der Cubitus ist hier überall als zweizinkige Gabel, aber ohne
Stiel ausgebildet, die IX. Ader stets aus zwei von der Wurzel an getrennten Aesten be-
stehend, die XI. Ader einfach. Bei *Strachia, Mormydea, Elasmosthetus* etc. ist der hin-
tere Ast der V. Ader mehr minder deutlich sichtbar, der Vorderast eine kurze Strecke
mit dem Ende des Radius vereinigt.

Bei den Spartoceriden, *Anisosceliden, Coreiden* und *Lygaeiden* etc. ist
der Hinterflügel, namentlich in Bezug auf die Form der V. Ader verschieden, deren
Aeste in der Mitte sich vereinigen, dann aber wieder von einander trennen, so dass der
vordere Ast den Charakter einer Querader annimmt, die bei *Syromastes* eine kleine
nierenförmige Zelle begrenzt, welche durch die hinten dem Radius verlaufende Conca-
valfarde durchbrochen ist. Der Cubitus bildet bei *Petascelis* (Spartoceriden) eine von der
Wurzel an geteilte Gabel, bei *Pachymerus* fehlt der Stiel, bei *Syromastes* (Coreiden)
und *Copius* (Anisosceliden) ist er durch zwei abgekürzte Strichel angedeutet, bei *Lygaeus*
und *Pyrrhocoris* fehlt er gänzlich.

Bei *Miris* und *Calocoris* ist der Radius ganz an den Rand gerückt, die beiden Aeste
der V. Ader durch eine Querader verbunden, der vordere mit dem Radius vereinigt;
der Cubitus eine einfache Längsader, welche durch die Vereinigung der VI. und VIII.
Concavfarde an der Wurzel oft ausgelöscht ist. Die IX. Ader ist wie gewöhnlich gegabelt,
wohingegen die XI. fehlt. Dieselben Verhältnisse zeigen andere Capsiden, wie *Poecilo-
scytus, Molanonia* etc.

Bei den Phymatiden, z. B. *Phymata erosa* Wolf, ist die V. Ader mit einem
schiefen Aste des Radius am Ende verbunden, der Cubitus eine einfache, abgekürzte
Ader, bei *Macrolepistus crassimanus* Fab. gegabelt. Die übrigen Adern fehlen.

Bei den Harpactoriden (*Pleogaster mammosus* etc.) sind beide Aeste der
V. Ader vorhanden, aber an der Wurzel ausgelöscht, dafür ist der vordere durch eine
schiefe Querader mit dem Radius verbunden. Cubitus, IX. und XI. Ader wie bei den
Pentatomiden.

Bei *Pygolampis* sp. (*Reduvidae*) ist der vordere Ast der V. Ader an der Wurzel
und ausserdem noch vor dem Ende in einem Punkte mit dem Radius in Verbindung
und schliesst dadurch eine dreieckige Zelle hinter dem Radius ein.

Ein ganz eigenthümliches Geäder zeigen die Gerridae. Bei *Limnometra armata*
Spin. erkennt man den Radius nebst seinem Sector, ferner den gegabelten Cubitus,
durch eine Concavfalte von ihm getrennt, aber durch eine Querader mit ihm verbunden.
Die V. Ader fehlt, die VIII. stellt eine concave Falte dar, hinter welcher noch die ein-
fache IX. Ader verläuft. Die Randader, welche die einzelnen Convexadern verbindet, erinnert an die Cicaden. Im Hinterflügel ist der einfache Radius durch eine schiefe Querader mit der ebenfalls einfachen V. Ader verbunden. Die VI. und VIII. Ader stellen Concavfalten dar, welche den gegabelten Cubitus mit einer Querader zwischen seinen beiden Zinken einschliessen. Die IX. Ader ist einfach, ebenso die XI., und zwischen beiden läuft eine Concavfalte (X), die in einem einspringenden Winkel endigt.

Vergleicht man den Flügelbau der Homoptera, Heteroptera und Phytophthires, so wird man vergeblich nach einem gemeinsamen Merkmal suchen. Der Flügel ist bald lederartig, bald häufig. Die Subcosta bald vorhanden, bald fehlt sie; der Clavus, den fast alle Hemipteren besitzen, fehlt den Aphiden, während er andererseits vielen Orthopteren, Trichopteren und Hymenopteren zukommt. Sowohl die V. Ader als der Cubitus können fehlen, der Analfächer ist meist reduziert und enthält nur die IX. und XI. Ader, kommt aber in dieser Form auch bei Lepidopteren etc. vor.

Für die drei Hauptgruppen der Rhynchothen lassen sich die Flügel etwa durch folgende Merkmale charakterisieren:

getroffenen Längsaderen namentlich bei den grösseren Cicaden; manchmal fehlt sie vollständig.

Das Geäder der Rhynchoten im Allgemeinen zeigt zum Theile Aehnlichkeit mit dem der Panorpen, Trichopteren, Lepidopteren etc. sowohl durch die Ausbildung der V. Ader, als auch durch die Form des Analfeldes (Clavus) im Vorderflügel. Eine direkte Verbindung der Rhynchoten aber mit irgend einer der genannten Ordnungen lässt sich nicht constatiren; ja es ist sogar fraglich, ob nicht die Rhynchoten, wie dies zum Theil bereits versucht wurde, in mehrere Ordnungen aufzulösen sind.

IX. Neuroptera s. str.

Taf. XIV und XV.

In dieser Ordnung vereinigt Brauer blos die Sialiden und Megalopteren, zwischen denen *Corydalis* einerseits, *Dilar* andererseits Übergangsformen bilden. Als die ältere der beiden Gruppen sind die Sialiden anzusuchen, die bereits im Devon auftreten.

1. **Sialiden** (Taf. XIV, Fig. 56—58): Durch die grosse Anzahl von Queradern und die Entwicklung des Anallächsters erweisen sich *Corydalis* und *Cauliodes* als Formen, deren Geäder den ursprünglichen Typus am nächsten steht. Ersterze zeigt von Concavadern blos die Subcosta ausgebildet, alle übrigen sind durch Falten ersetzt. Der Radius entsendet nach hinten drei Stamme, deren erster sich in eine grosse Anzahl von parallelen Aesten mit zahlreichen Queradern theilt; er ist als Sector radii zu bezeichnen und durch eine Concavfalke (IV) von dem zweiten, ebenfalls in einige Aeste getheilten Stamm getrennt, der die V. Ader darstellt und abermals durch eine schwache Furche, als Rudiment der VI. Concavader, vom Cubitus getrennt ist. Dieser entsendet nach hinten eine Reihe paralleler Aeste und ist durch eine Concavfalke (VIII) vom reducirten Analfeld getrennt, welches drei gegabelte, durch einzelne Queradern verbundene Convexadern enthält,
welche die IX., XI. und XIII. Ader darstellen, denen sich am Grunde noch eine einfache Ader (XV) anschliesst. — Im Hinterflügel erkennt man leicht die entsprechenden Arten. Der Sector ist durch eine lange Querader mit dem Stamm der V. Ader verbunden, der Cubitus von der Wurzel an in zwei Aeste getrennt, deren vorderer eine Reihe von Zweigen nach rückwärts abgibt. Das Analfeld ist von grösserer Ausdehnung als im Vorderflügel und zeigt die IX. und XIII. Ader gegabelt, die XI. und XV. einfach. — *Chauliodes* zeigt fast denselben Bau. Die V. Ader ist nur in zwei, der Cubitus in drei Zinken geteilt, im Analfeld ist die IX. und XI. Ader gegabelt, die XIII. einfach, XV. fehlt. Im Hinterflügel tritt die der IV. Ader entsprechende Falte so nahe an die V. heran, dass sowohl der Stamm als die vordere Zinke derselben concav erscheint. Im Analfelde sind IX, XI gegabelt, XIII in drei Zinken geteilt, XV einfach. — Auch *Sialis* zeigt im Wesentlichen das Geäder von *Corydalis*, nur ist die Verästelung, sowie die Zahl der Querader einfacher. Die V. Ader entspringt bei *S. fuligiosa* aus dem Radius, legt sich dann eine kurze Strecke an den Vorderast des gegabelten Cubitus und wird in ihrem weiteren Verlaufe durch die vorhergehende IV. Ader concav. Die VIII. Ader ist wie bei *Corydalis* eine Falte, das Analfeld zeigt die kräftige, aber einfache IX., sowie die gegabelte XI. Ader. Im Hinterflügel ist die V. Ader an der Wurzel ausgelöscht und nicht unmittelbar, sondern nur durch Querader mit dem Cubitus und Sector radii in Verbindung. Im Analfelde sieht man ausser der einfachen IX. und gegabelten XI. Ader auch noch die abgekürzte XIII. — *Inocellia* stellt ein Bindeglied zwischen *Sialis* und *Raphidia* dar und zeigt im Wesentlichen das Geäder der ersteren. Der Sector ist durch eine kurze, seichte Furche von der V. Ader getrennt, die sich so mächtig entwickelt, dass der Cubitus dadurch beeinträchtigt wird, und im Vorderflügel blos eine am äussersten Ende gegabelte Ader bildet, während er im Hinterflügel sich von der Wurzel an in zwei Aeste theilt, deren vorderer eine Endgabel bildet. Das Analfeld, durch die als Falte ausgebildete Analader begrenzt, zeigt die IX. und XI. Ader, im Hinterflügel beide, im Vorderflügel nur die letztere gegabelt. — *Raphidia* weicht von *Inocellia* vorwiegend durch die kleinen Endgabeln der Convexadern ab und erinnert dadurch an die Hemerobiden. Die V. Ader ist wieder durch eine seichte Concavfalte vom Sector getrennt und im Vorderflügel gleich vom Ursprunge an geteilt und reich verästelt. Der Cubitus ist im Vorderflügel eine einfache Ader, durch zwei Querader mit V verbunden. Vor ihm verläuft eine sehr schwache Furche (VI), hinter ihm eine Concavfalte als Rest der Analader, welche seine Wurzel auslöscht. Sowohl die IX. als die XI. Ader gegabelt und eine der beiden Gabelzinken noch mit einer kleinen Endgabel. Im Hinterflügel treten Anal- und VI. Ader so nahe zusammen, dass der von ihnen eingeschlossene Cubitus an der Wurzel concav erscheint und sich erst am Ende in drei convexe Zinken theilt. Die IX. und XI. Ader legen sich mit ihren Endgabeln eine Strecke aneinander, und hinter ihnen ist noch eine Spur der XIII. Ader sichtbar.

2. *Megaloptera* (Taf. XIV, Fig. 59 und 60; Taf. XV, Fig. 61—67): Vergleicht man die verschiedenen Gattungen der Megalopteren in Bezug auf das Flügelgeäder, so treten uns solche Extreme in der Ausbildung der einzelnen Concav- und Convexadern entgegen, dass ein gemeinsamer Plan in der Anlage der Arden für den ersten Augenblick kaum zu finden ist. Die Hemerobiden scheinen mir jenen Typus des Flügelgeäders zu besitzen, auf den sich das Geäder der ganzen Megalopterenfamilie zurückführen lässt, und als Beispiel mag *Megalomus hirtus* Fab. dienen. In dem reichen Geäder erkennen wir blos eine Concavader, die Subcosta, während die IV., VI. und VIII. Ader als schwache, undeutliche Furchen ausgebildet sind. Die erste derselben trennt den Radius mit seinen zahlreichen Sectoren von der ebenfalls mehrfach verästelten V. Ader, die abermals durch eine
Concavfurche vom reich verzweigten Cubitus geschieden ist. Hinter der Analfalte folgen noch die IX. und XI. Ader, jede am Ende in mehrere Zweige geteilt. Im Hinterflügel sind die homologen Adern leicht erkennbar. Die der VI. Ader entsprechende Falte ist kaum erkennbar, sonst das Geäder wie im Vorderflügel. — Fast genau denselben Aderbau zeigen *Hemeroebius, Micromus* und *Drepanopteryx*, von den Osmyliden die Gattung *Sisyra*.

Der Flügel von *Nymphes myrmeleonoides* Leach. erinnert an den von *Polystoechotes*, doch scheint im Vorderflügel der Stamm und Vorderast der V. Ader durch die IV. Concavader ausgelöscht zu sein, während dieselbe im Hinterflügel vollständig obliterate ist, wie bei *Osmius* oder *Porismus*. Im Analfelde trennt bei *Nymphes* eine Concavader (X) die mehrfach verzweigte IX. von der reducirten XI. Ader.

Der Flügel von *Chrysopa* lässt sich von dem der Osmyliden ableiten, indem die beiden Aeste der V. Ader bald nach ihrem Ursprung sich wieder vereinigen und die so-
genannte »Cubitalzelle« einschliessen. Ihr weiterer Verlauf ist durch die concave IV. Ader abgeschnitten, die am Grunde, unmittelbar vor der Cubitalzelle als Falte sichtbar ist. Der Cubitus ist wie bei Osmylus gestaltet, die Analader aber entspringt als Falte und geht im Bogen zum Hinterrand. Im Hinterflügel ist die V. Ader ganz verschwunden, wie dies auch bei Osmylus der Fall ist. Denselben Aderbau wie Chrysopa zeigen ferner Hypochrysa, Ankylopteryx und Notochrysa. Der Flügel von Apochrysa dagegen, schon äusserlich sehr auffallend, weicht insofome vom Chrysopa-Flügel wesentlich ab, als die V. Ader nicht nur im Hinterflügel, sondern auch im Vorderflügel obliterirt ist, die vor dem Cubitus verlaufende Concavader demnach der IV. Ader oder der Vereinigung von IV und VI entspricht.

Von den Mantispiden erinnert Drepanicus im Flügelgeäder noch sehr an Hemerobius, namentlich in Bezug auf den Vorderflügel, in dem man den Radius nebst den Sectoren, sowie die V. Ader leicht erkennt, ohne dass dieselben durch Falten oder Concavader abgegrenzt wären. Im Hinterflügel ist die IV. Ader als Falte vor der V. Ader sichtbar, VI. und VIII. Ader dagegen am Grunde zu einer kurzen Concavader vereinigt, welche den Stamm des Cubitus unter das Flügeliveau hinabdrücken. IX. und XI. Ader sind, wie im Vorderflügel, durch eine Concavfalte getrennt.

Der Flügel der Nemopteriden, Ascalaphiden und Myrmeleoniden stimmt im Wesentlichen überein und lässt sich am besten aus dem Flügel von Cordulecerus vulpecula Burm. ableiten. Der Vorderflügel dieser Art zeigt hinter der Subcosta den Radius mit seinem vielfach verzweigten Sector. Von diesen Astes des Sectors fällt der letzte (hinterste) sowohl durch seine Theilung, als auch dadurch auf, dass vor ihm eine Concavader verläuft, die am Grunde als Falte erscheint. Ich halte nun diese Concavader für die IV., die hinter ihr liegende Ader demnach als die mit dem Sector radii mehr oder minder vereinigte V. Ader. Die darauffolgende Concavader erweist sich dann als VI., auf welcher der reich verzweigte Cubitus, sowie die concave Analader folgen. Letztere löst den Stamm der IX. Ader aus, so dass nur die Endzweige convex erscheinen; an der Flügelwurzel folgt endlich auch noch die XI. Ader. — Bei Ascalaphus fehlt jene IV. Ader vollständig, daher ist auch die V. Ader vom Sector radii nicht zu unterscheiden, wenn man nicht das Geäder von Cordulecerus vergleicht. Im Uebrigen sind beide Gattungen in Bezug auf das Flügelgeäder vollkommen übereinstimmend, nur ist der Cubitus bei Cordulecerus im Hinterflügel wenig und nur am Ende verzweigt, während bei Ascalaphus das Geäder des Cubitus im Vorder- und Hinterflügel gleich stark entwickelt ist.

Bei Thelyproctophylla ist das Analfeld noch mehr als bei Cordulecerus reduziert, namentlich die IX. Ader im Vorderflügel am Grunde, im Hinterflügel aber fast der ganzen Länge nach durch die mit ihr zusammenfallende VIII. Ader ausgelöscht.

Nemoptera sinuata Oliv. hat im Vorderflügel das Geäder von Ascalaphus, nur sind IX. und XI. Ader bald nach ihrem Ursprung der Länge nach verwachsen. Der lange, 1) Ganz ähnlich verhalten sich Plynx, Haplogenus etc.
schmale Hinterflügel dagegen zeigt eine weitgehende Reduction des Geisters, welches blos aus einer convexen und zwei concaven Längsadern zu bestehen scheint, deren Deutung daher unsicher ist.

Das Geäder der Myrmeleoniden stimmt im Wesentlichen mit dem der Ascalaphiden überein, erinnert aber andererseits auch an das von Nymphes. Während jedoch hier die V. Ader hinter einer Convexader liegt, welche demnach als IV. zu bezeichnen ist, muss bei den Myrmeleoniden nach Analogie des Cordulecerus-Flügels angenommen werden, dass die V. Ader mit dem Sector radii vereinigt ist, die folgende Convaxader daher der VI. entspricht. Dass diese Deutung richtig ist, beweist Palpares, bei welcher Gattung die V. Ader stärker entwickelt ist als bei anderen Myrmeleoniden. Hier folgt auf die V. Ader die VI. Convacader, wie bei den Uebriten, aber auch die IV. Ader ist hier, wie bei Cordulecerus, als deutliche Convacader vor der V. sichtbar, während sie bei anderen Gattungen nur als eine seichte Furche oder gar nicht angedeutet ist.

Atesia mag als erste Form erörtert werden, da sich aus ihr die Flügel der übrigen Myrmeleoniden ableiten lassen. Im Hinterflügel folgt auf die VI. Convacader der Cubitus als einfache Convexader mit zahlreichen Queradern gegen die im Bogen hinter ihr verlaufende Analader, auf welche noch die zickzackförmig gebogene IX. Convexader folgt. Im Vorderflügel dagegen ist der Cubitus gegabelt, und es hat den Anschein, als ob eine jener Queradern des Cubitus, wie bei den Odonaten, sich stärker verlängert und verdickt und dadurch den Charakter eines Gabelastes angenommen hätte.

zwischen den Cubitalzinken, als auch jene, welche der IV. Ader entspricht, mehr minder deutlich ausgebildet, namentlich im Vorderflügel, bei Gymnocnemia dagegen sind dieselben fast vollkommen verloren gegangen.

X. Panorpatae.

Taf. XV, Fig. 68.

Bittacus ist die XI. Ader im Vorderflügel einfach, im Hinterflügel fehlt sie ganz. Queradern finden sich fast zwischen je zwei Adern mehrere, sind aber grösstentheils blass und undeutlich, was wohl auf Rechnung der sie durchsetzenden Concaufalten zu schreiben ist.

Im Hinterflügel von Panorpa ist das Geäder im Ganzen ähnlich wie im Vorderflügel, mit dem Unterschiede, dass die V. Ader ihren Ursprung nicht dicht hinter dem Radius aus der Flügelwurzel, sondern aus dem Cubitus nimmt. Der Cubitus entsendet eine S-förmige Querader gegen die Flügelbasis und die IX. Ader gabelt sich nicht schon an der Wurzel, sondern im ersten Drittel ihrer Länge. Die Analader ist im Hinterflügel nur durch eine Falte angedeutet.

Vergleicht man das Flügelgeäder der Panorpen mit dem anderer Insectenordnungen, so müssen die Trichopteren als die ählichsten angesehen werden, sowohl in Bezug auf die Adervertheilung als auch auf die Bildung des Thyridiums, d. h. die Durchbrechung der V. Ader. Da aber die übrigen Merkmale der Panorpen sie ziemlich weit von den Trichopteren entfernen, muss es vorläufig dahingestellt bleiben, ob die Ähnlichkeit des Flügelgeäders auf eine gemeinsame Abstammung zurückzuführen ist.

XI. Trichoptera.

Taf. XV, Fig. 69; Taf. XVI, Fig. 70 und 71.

Unmittelbar an die Panorpen schliesst sich die von Brauer als eigene Ordnung angesichene Gruppe der Trichopteren, die wieder anderseits den Lepidopteren, insbesondere den Tineiden wenigstens in Bezug auf das Flügelgeäder verwandt erscheint. Welche Abtheilung in dieser Ordnung als älteste zu bezeichnen ist, darüber gehen die Meinungen weit auseinander, indem die Einen die Hydropsychiden und Andere die Limnophiliden dafür halten. Für diese letztere Ansicht würde das ziemlich stark entwickelte, faltbare Analfeld stimmen, während die Mystaciddiden und Hydropsychiden sich mehr an die Lepidopteren anschliessen und als jüngere Formenreihen anzusehen wären.

Bei Limnophilus sind von Concaudern nur die Subcosta und Analader entwickelt. Dazwischen laufen zwei convexe Stämme, welche als Radius und Cubitus aufzufassen sind. Der erstere gibt bald nach seinem Ursprunge den Sector ab, der sich wieder in zwei gegabelte Aeste theilt, die durch eine Querader miteinander verbunden sind. Aus dem Cubitus entspringt nach vorne eine am Ende in drei Aeste getheilte Convexader, welche durch eine Querader sowohl mit der hinteren Gabel des Sector radii, als auch mit der vorderen Zinke des gegabelten Cubitus in Verbindung steht und die ich als V. Ader betrachte. Sie zeigt an der Stelle, wo sie sich gabelt, eine mehr minder deutliche Auslösung, das Thyridium, wie es bei den Panorpen sichtbar ist. Auch hier ist diese Bildung auf die Einwirkung der nur als Falten angedeuteten IV. und VI. Ader zurückzuführen, welche den Stamm der V. Ader bis zu seiner Theilung begleiten und denselben so unter das Flügelniveau herabdrücken, dass er concav erscheint. Das Analfeld erinnert vollkommen an den Clavus der Hemipteren und ist von drei Adern durchzogen, deren erste als IX. Ader anzusehen ist, während die beiden anderen, die bald nach ihrem Ursprung miteinander und in ihrem weiteren Verlaufe auch mit der IX. verwachsen, die XI. Ader darstellen. Im Hinterflügel ist ebenfalls nur die Subcosta und Analader als ausgebildete Concaudaver vorhanden. Der Radius samt dem zweimal gegabelten Sector, sowie der gegabelte Cubitus mit der dreiteiligen V. Ader sind wie im Vorderflügel gebildet. Das Analfeld enthält vier Adern, die einfache IX. und XV. Ader,

XII. Lepidoptera.

Taf. XVI, Fig. 72—79; Taf. XVII, Fig. 80—82.

So scharf sich die Schmetterlinge durch ihre Mundtheile, Entwicklung u. s. w. von den übrigen Insecten unterscheiden lassen, so schwierig ist es, im Flügelgeäder derselben einen spezifischen Charakter zu finden. Namentlich die Panorpen und Trichopteren

Von den Psychiden standen mir nur beschuppte oder beschädigte Exemplare zur Verfügung, weshalb ich das Geäder nicht in dem Masse untersuchen konnte, um genauen Bescheid darüber zu geben; doch scheint mir dasselbe, namentlich im Vorderflügel, grosse Aehnlichkeit mit dem der Tineiden zu besitzen. IV. und VI. Ader scheinen manchmal der ganzen Länge nach verschmolzen zu sein.

Sesia apiformis erinnert im Vorderflügel an Zygaena, doch entspringt die zweite Gabel des Sector radii aus der ersten und die Analader ist durch eine Falte ersetzt. Der Hinterflügel erscheint gegen den von Zygaena sehr verschmälert, so dass die V. Ader auf eine Endzinne reduziert wird. Die IV. und VI. Ader sind durch Concavfalten vertreten, die Analader ebenfalls durch eine Falte ersetzt, die Subcosta dagegen ausgebildet, parallel dem Radius verlaufend.

1) In der Abbildung (Taf. XVII, Fig. 80) ist im Vorderflügel der Sector irrhöhmlich sechszinkig gezeichnet und die kurze Subcosta im Hinterflügel ausgelassen worden.

Annalen des k. k. naturhistorischen Hofmuseums, Bd. 1, Heft 3, 1889.
bei einigen (Agrotis) theilweise als Ader ausgebildet und häufig von einer vorderen und hinteren Concavfalze begleitet, die als Reste jener Concavadern anzusehen sein dürften, welche im ursprünglichen Flügel zwischen dem Radius und seinem Sector, sowie zwischen den beiden Cubitalzinken verliefen. Die IX. und XI. Ader sind im Hinterflügel stets getrennt; im Vorderflügel ist die XI. Ader abgekürzt und entweder frei (Agrotis), oder durch eine Querader mit der IX. verbunden (Hadena), oder wie bei Cerastis mit der selben verwachsen, oder sie fehlt ganz (Rivula, Catocala). Hinter der IX. Ader schlägt sich das Anal Feld, wie bei Zygaena, nach unten um.

Die Drepanulinen (Platypteryx falcu) erinnern im Flügelgeäder an die Eulen, namentlich durch das Verhalten des Sector radii, der in zwei Gabeln geteilt ist, die sich jedoch nicht unmittelbar aneinanderlegen, sondern nur durch eine Querader miteinander verbunden sind.

Ebenso zeigen die Notodontinen (Harpyia vinula) eine Anhangszelle, indem sich der hintere, einfache Gabelast des Sector radii an den vorderen, vierheiligen eine kurze Strecke anlegt und auf diese Weise eine dreieckige Zelle einschliesst. Die V. Ader erscheint hier dem Sector radii genähert und durch eine kleine, schief Querader mit demselben verbunden. Bei Phaleria bucephala sind beide Gabeläste des Sector radii so miteinander an der Wurzel verschmolzen, dass die Anhangszelle verschwindet.

Von den Lithostiiden zeigt Leptosoma plagiatum die Anhangszelle wie bei den Eulen, während bei Nola strigula der Sector radii in einen vorderen, gegabelten und einen hinteren, einfachen Ast geteilt ist, die jedoch nicht miteinander in Verbindung stehen, weshalb die Anhangszelle entfällt.

Ebenso zeigt von den Geometrinaen Cidaria die Anhangszelle; bei Venilia ist der vordere, einfache Ast des Sector radii durch eine kurze Querader mit dem hinteren, vierzinkigen verbunden, bei Psodos, Hibernia und Amphidasiz fehlt die Anhangszelle vollständig.

Unter den Pyralidinen (Botys polygonalis) ist der Sector radii in einen gega- belten und einen einfachen Ast gespalten, ohne dass es zur Bildung einer Anhangszelle kommt. Eigentümlich verhält sich bei dieser Art das Anal Feld, welches im Vorderflügel die IX. und XI. Ader von einander getrennt zeigt. Im Hinterflügel laufen hinter dem Cubitus drei Convexadern, durch je eine Concavfalze von einander getrennt, so dass eine doppelte Auffassung möglich ist: entweder sind diese drei Convexadern als IX., XI. und XIII. zu bezeichnen, oder man hat die Analader als zweiteilige Concavader anzunehmen, welche eine Convexader einschliesst. Da diese Ausbildung der Analader sowohl bei Ephemeriden als auch bei Lepidopteren (Simaethys) vorkommt, halte ich die letztere Auffassung wenigstens für möglich.

Brephos puella zeigt den Sector radii in einen dreizinkigen und einen einfachen Ast gespalten, ohne Spur einer Anhangszelle. Die V. Ader ist sowohl im Vorder- als im Hinterflügel vollständig ausgelöscht, dafür an ihrer Stelle eine Concavader vorhanden, welche sich im Discoidalfeld als Concavfalze fortsetzt. Im Hinterflügel ist die Costa submarginal, der Radius, wie gewöhnlich, gegaft, die Analader durch eine Falte vertreten. Im Vorderflügel ist blos die IX., im Hinterflügel auch die XI. Ader ausgebildet.

radii (*Saturnia*), bald mehr dem dreispartigen Cubitus genähert; bei *Bombbyx* setzt sie sich noch ein kurzes Stück im Discoidalfeld fort. Die Analader ist bei *Bombbyx* in beiden Flügeln, bei *Gastropacha* im Vorderflügel teilweise als Concavader, bei den übrigen Spinnern nur als Falte ausgebildet. Im Vorderflügel ist entweder die IX. Ader allein, oder die XI. nur als kurze Convexlinie ausgebildet (*Bombbyx*), im Hinterflügel sind in der Regel IX. und XI. Ader vollständig entwickelt und von einander durch eine Concavfalte getrennt, oder die XI. Ader fehlt (*Saturnia*). Dicht hinter der IX. Ader verläuft bei ersteren eine Convexfalte, längs welcher das Analfeld nach unten umgeschlagen wird. Im Hinterflügel ist der Radius bei *Gastropacha* mit der submarginalen Costa durch eine schiefe Querader verbunden und die Costa gibt zur Stütze des Präcostalfeldes 2—3 Äste nach vorne ab.

XI. Ader fehlt im Vorderflügel von *Satyrus, Vanessa, Doritis* etc., bei *Papilio* mündet sie frei in den Hinterrand; im Hinterflügel fehlt sie bei *Papilio, Thais, Doritis* etc.

Den Tineiden offenbar verwandt erscheinen die Pterophoriden, deren Flügel in 2—3 Theile mehr minder tief zerschnitten ist. Stets fallen diese Einschnitte mit der Richtung von Concavadern zusammen, die ja überhaupt Linien bilden, längs welchen der Insektenflügel leicht zerreiss.

Als nächste Verwandte der Lepidopteren sind jedenfalls die Trichopteren anzusehen, denen die Mikrolepidopteren (Tineiden) sowohl im Flügelgeäder, als auch in der Ausbildung und Vertheilung der Flügel Muskulatur näher stehen als die Macrolepidopteren. Diese sind daher als jüngere Glieder, jene als die Stammformen der ganzen Ordnung anzusehen.

XIII. Diptera.

Taf. XVIII, Fig. 83—95; Taf. XVIII, Fig. 96—100.

Die Zweiflügler sind die einzige Insektenordnung, bei denen die Flügel in Bezug auf die Qualität der Adern (ob concav oder convex) untersucht wurden, und zwar von Prof.

Vollständig ausgebildet erscheint diese V. Ader blos bei manchen Psychodiden, ferner bei Sciara und Lonchoptera; durch Aneinanderrücken der sie begleitenden IV. und VI. Ader aber wird sie in ihrem Stammtheil vollständig oder theilweise unterdrückt, so dass nur die Endgängen noch erhalten bleiben, wie bei Bibio, Tipula, Stratiumyss etc. Noch weiter geht die Vereinigung dieser IV. und VI. Ader, resp. Falte bei Psychoptera, Culex etc., bis endlich durch das völlige Verschmelzen derselben die V. Ader vollkommen ausfällt oder nur durch Spuren angedeutet ist, wie bei Dolichopus, Sypopus, Tachina, Trypete etc.

Die »sogenannte« Vena spuria der Syrphiden ist offenbar nur ein verlocheren Zweig des Radialsystems, der bald als abgekürzte Convexader, bald nur als erhabene Falte auftritt und manchmal mit den Zinken der V. Ader in Verbindung steht.

Alle diese Erscheinungen weisen darauf hin, dass der Dipterenflügel durch ausgedehnte Reduction, namentlich auf dem Gebiete der V. Ader, aus einem viel reicher geädernten Flügel entstanden ist, von dem sich noch Spuren in den zahlreichen, oft schwer zu entwirrenden Falten erkennen lassen.

Das Geäder der Psychodiden ist bei der geringen Grösse des Flügels schwer zu entziffern; meine und Adolph's Zeichnungen stimmen daher auch nicht überein. Eine mexikanische, leider nicht näher bestimmte Psychocide, welche ich der Güte des Herrn Prof. F. Brauer verdanke, lässt die Adern ihrer Natur nach deutlich erkennen und zeigt ein Geäder, welches dem ursprünglichen Typus des Dipterenflügels ziemlich nahe stehen dürfte. Von concaven Adern zeigt dasselbe blos die Subcosta (Hilfsader), dafür aber sind je zwei Convexzweige durch eine concave Falte von einander getrennt. Von Convexadern erkennt man leicht den Radius (erste Längsader), der nach hinten den gegabelten Sector (dritte Längsader) abgibt, und aus diesem entspringt abermals eine zwei-
zinkige Ader, welche ich als V. Ader bezeichne. Durch eine Querader ist sie mit dem
gegabelten Cubitus (fünfte Längsadern) verbunden, auf welchen noch eine zweiteilige
(IX) und eine einfache Convexader (XI) folgen. Vergleicht man diesen Flügel mit dem
Schema, welches Adolph l. c. Taf. I, Fig. 1 gibt, so wird man eine geradezu frappierende
Uebereinstimmung trotz der abweichenden Bezeichnungsweise finden. Der Radius samt
seinem convexen Sector entspricht den von Adolph mit I b, II b, III b bezeichneten Adern.
Die V. Ader ist gleichwertig der Ader IV b in der Area antica und der Ader I b in der
Area media. Der Cubitus entspricht den Adern II b und III b der Area media, während
die drei Convexadern der Area postica der gegabelten IX. und einfachen XI. Ader nach
meiner Zeichnung entsprechen.

Bei den Mycetophiliden (Sciara vivacea Winn.) erkennt man leicht die homologen
Adern, nämlich die verkümmernte Subcosta, den Radius mit seinem einfachen Sektor, aus
dem wieder die gegabelte V. Ader entspringt. Die Wurzel dieser Ader erscheint fast aus
gelöscht, offenbar durch die als schwache Falten angedeutete IV. und VI. Ader. Die nächste
convexe Gabelader ist der Cubitus, die Analader (sechste Längsadern) durch eine Falte
vertreten, endlich folgt noch eine abgekürzte Convexader (IX). — Bei Lonchoptera spec.
sieht man ausser der Subcosta noch eine zweite Concavader, welche zwischen Radius
und seinem Sector verläuft und für die meisten Dipteren ein äusserst charakteristisches
Merklam bildet. Da sie zum System des Radius gehört, wäre sie als III 2 zu bezeichnen
und entspricht dem Sector principalis der Odonaten, während der Radius selbst als III,
daer der Sektor als III 1 anzusehen ist. Nun folgt eine Convexgabel (V.), die vorne und
rückwärts von einer Concavfalze begrenzt ist und außerdem eine concave Furche zwischen
Der Stamm dieser V. Ader entsendet unter gleichzeitiger winkeliger Knickung eine Quer-
ader gegen III 1 und legt sich dann eine Strecke an den ebenfalls gegabelten Cubitus an,
dessen Zinken bei der von mir untersuchten Art vor ihrem Ende verschmelzen. Eine
weitere Convexader (IX) verschmilzt nach kurzem Laufe mit dem Cubitus und ist durch
eine seichte Concavfalze von ihm getrennt. Adolph’s Zeichnung weicht insofern von
meiner ab, als dort die Wurzel der V. Ader als concave Linie, ihr mittlerer Theil zweifel-
haft gezeichnet ist und die Aeste des Cubitus miteinander nicht verschmelzen.

Bei Bibio ist ausser der Subcosta auch die IV. und VIII. Concavader entwickelt, während
III 2, V 2 und VI nur als Falten erscheinen; auch das Ende von IV ist durch eine Furche
ersetzt, welche unmittelbar vor V 1 läuft. Die V. Ader ist nur in ihren beiden Zinken er-
halten, während der Stamm obliterirt ist. Der Cubitus ist gegabelt und dicht hinter ihr
die concave Analader, auf welche noch eine kurze IX. Ader, sowie die Spur einer X. und
XI. Ader folgt. — Rhyphus zeigt ausser der Subcosta noch III 2, IV, VI und X als Con-
cavadern entwickelt; IV und VI sind an der Wurzel vereinigt, dann getrennt und lösen
den Stamm der, wie es scheint, dreizinkigen V. Ader aus, so dass blos die Enden derselben
sichtbar sind. Die Analader ist durch eine Falte ersetzt. — Bei Psycchoptera sind
IV. und VI. Ader vereinigt und lösen die V. Ader so weit aus, dass nur eine convexe
Gabel übrig bleibt. Vorher verläuft eine Convexfalze, welche der Vena spuria der Syr-
phiden entspricht und als ein verlocherster Ast des Radius anzusehen ist.

Ganz ähnlich verhält sich auch Culex, doch ist die Vena spuria an das Ende als Con-
vascular ausgebildet. — Chironomus zeigt die Adern II, III 2, IV und X ausgebildet,
während VI und VIII durch Falten ersetzt sind; die V. Ader fehlt ganz. — Bei Simulia
sieht man von Concavadern II, III 2 und III 1, IV und VIII, von Concavalten VI und VII 2,
Convex sind III 1 und VII, V fehlt volständig, der Sector radii ist nur als Convexfalze
twickelt. — Noch weiter geht die Reduction bei Cecidomyia, welche Gattung blos

Von den Xylophagiden zeigt Coenomyia den Radius nebst dem Sector, der sich gegen die Wurzel in Form einer Convexader fortsetzt, die V. Ader, durch die am Grunde vereinigte IV. und VI. Ader ausgelöscht, Cubitus und IX. Ader wie bei Stratiomyes. Die vordere Zinke des Sector radii ist durch eine Convavader ersetzt, welche als III, zu bezeichnen ist. — Tabaniden und Leptiden stimmen im Wesentlichen überein. Sector radii gegabelt, der Stamm nur als Convexfalze ausgebildet. IV. und VI. in der Wurzelhälfe vereinigt, nur die letztere erreicht den Flügelsaum, während die erstere in zwei Convexadern endigt, welche als die Zinken der grösstenheils ausgelöschten V. Ader zu bezeichnen sind. Die VI. Ader steht mit der vorderen Cubitalzinkle durch eine kurze Querader in Verbindung. VIII. und IX. Ader normal. — Acrocera zeigt von Convavadern nur die Subcosta ausgebildet; III, und III, IV und VI, sowie die Analader sind durch Falten ersetzt. Von Convexadern sind der Radius samt seinem gegabelten Sector, der fast von der Wurzel an gegabelte Cubitus und die IX. Ader ausgebildet; V ist nur durch eine kurze Falte angedeutet.

Die Mydaidae, Apioceridae, Asilidae und Bombyliidae haben ein im Wesentlichen übereinstimmendes Geänder. IV und V. sind stets am Grunde vereinigt, dann aber getrennt, ihre convexen Enden als Zinken der V. Ader aufzufassen, und bei den Bombylien legt sich der VI. Ader eine Strecke an die vordere Cubitalzinkle, während sie bei Mydas, Apioera und den Asiliden nur durch eine Querader mit ihr vereinigt ist. Bei Usica aurata Fab. ist nur die IV. Ader entwickelt, die VI. (Theilungsader) dagegen durch eine Falte ersetzt, welche vor dem Cubitus verläuft. Die V. Ader scheint hier völlig oblitterirt zu sein. Bei Mydas laufen sowohl IV. und VI. Ader, als auch die convexen Gabelenden der V. Ader, deren eine durch eine Falte ersetzt ist, nicht wie gewöhnlich gegen den Hinterrand, sondern gegen die Flügel Spitze, was dem Geänder ein eigenthümliches Gepräge gibt. — Scenopinus lässt sich von Mydas einfach dadurch ableiten, dass man die IV. und VI. Ader der Länge nach verwachsen annimmt, so dass als V. Ader nur das convexe Ende jener aus IV. und VI. zusammengesetzten Convavader anzusehen ist.

Empis unterscheidet sich von Bombylius etc. vorwiegend durch die Gestalt des Cubitus, der ursprünglich, wie bei Acrocer, fast von der Wurzel an gegabelt angenommen werden muss. Während nun der vordere Ast vollkommen erhalten blieb, ist der hintere fast vollständig durch eine Convexfalze ersetzt. Die schief gegen die Analader
verlaufende Ader fasse ich als Querader zwischen den beiden Zinken auf. — Bei *Doliocopus* ist die Subcosta stark verkürzt, die IV. Ader mit der VI. vereinigt und die Analader nur durch eine Falte repräsentiert. Die V. Ader ist obliteriert, der Cubitus einfach, seine hintere Zinke durch eine Falte ersetzt. Bei *Lianculus* erscheint eine Spur der V. Ader als Convexende der IV. Ader, während die VI. durch eine Falte ersetzt ist.

Unter den *cyclorrhaphen* Dipteren zeichnen sich die Syrphiden durch das Vorhandensein einer »Vena spuria« aus, welche zwischen Sector radii und Cubitus verläuft und als ein Ast des Radius aufzufassen ist. Die Unterbrechung, welche sie meist in der Mitte zeigt, ist vielleicht auf ähnliche Weise entstanden wie das Thyridium der Panorpiden und Trichopteren, und in der That endet an dieser Stelle eine Concavfalte. Bei *Volucella* ist die Vena spuria durch eine Falte ersetzt. Der Cubitus ist deutlich gegabelt, hinter ihm die concave Analader und die einfache oder gegabelte IX. Ader. — Bei *Pipunculus* fehlt die V. Ader bis auf ein kurzes convexes Aderstück am Flügelsaum vollständig; die IV. Ader ist hier deutlich entwickelt, die VI. dagegen durch eine Concavfalte vor dem gegabelten Cubitus ersetzt. Gegen die Basis des Flügels scheinen IV. und VI. Ader verwachsen zu sein.

Phora zeigt von Concavadern nur die Subcosta und die abgekürzte Analader. Die VI. Ader ist durch eine Concavfalte angedeutet, vor welcher die einfache V. Ader verläuft, die ihren Ursprung aus dem Radius nimmt.

Bei *Hippobosca* sind die meisten Concav- und Convexadern abgekürzt, dafür aber eine grosse Anzahl von Concav- und Convexfalten sichtbar, welche als die Gabelenden jener zu betrachten sind. Bei *Stenopteryx* und *Oxypterum* ist der Flügel stark reduziert, lässt aber dieselben Aderstäme wie *Ornithomyia* unterscheiden. Deutlich erkennt man Radius sammelt Sector, sowie den gegabelten Cubitus, die V. Ader ist nur durch eine Convexfalte vertreten. Die Concavader III2 ist stets deutlich, die Subcosta dagegen bei *Oxypterum* stark eingerieben und bei *Stenopteryx* durch Vereinigung von Costa und Radius verschwunden.

Wie schon *Brauer* (Denkschr. der kais. Akad. d. Wissensch., Wien 1882, p. 93) erwähnt, ist bisher im Flügelgeäder ein scharfer Unterschied zwischen *cyclorrhaphen* und orthorrhaphen Dipteren noch nicht gefunden worden. Es zeigt sich eben auch hier, dass das Flügelgeäder für grössere Formkreise, wie Ordnung oder Unterordnung, nicht mehr als charakteristisches Merkmal verwendet werden kann, sondern höchstens zur Abgrenzung einer Familie oder Unterfamilie brauchbar ist. So leicht sich eine *Panorpa* von einer Trichoptere oder ein *Acridier* von einer Locustide unterscheiden lässt, so schwierig, ja geradezu unmöglich ist es, einen scharfen, durchgreifenden Unterschied im Flügelgeäder zu finden. Für die Mehrzahl der Dipteren lassen sich als charakteristische Merkmale anführen, dass der Sector radii (III2) vom Radius (III1) durch eine Concavader getrennt ist, welche dem Sector principalis der Odonaten und Epheme-

Als XIV. Ordnung bezeichnet Brauer die Siphonaptera, welche durchwegs ungeflügelte Formen enthalten.

XV. Coleoptera.

Taf. XVIII, Fig. 101—116; Taf. XIX, Fig. 117—138; Taf. XX, Fig. 139—151.

Dr. Otto Roger: Das Flügelgeäder der Käfer, 1875.

Dr. Oswald Heer: Insectenfauna der Tertiärgesteine von Oenningen und Radobojo, 1847.

Während bei den Dipteren die Hinterflügel verkümmert sind, bei den Lepidopteren, Hymenopteren etc. nur eine untergeordnete Rolle beim Fluge spielen, stellen sie bei den Coleopteren die eigentlichen Flugorgane dar, wogegen die stark verhornten Flügeldecken zum Schutze der unter ihnen befindlichen Weichteile des Körpers dienen und bei der Flugbewegung nur nebenbei Verwendung finden. Dem entsprechend erscheinen bei den Käfern auch die Hinterflügel fast ausnahmslos grösser als die Deckflügel und werden in der Ruhelage derart zusammengefasst, dass sie unter jenen vollkommen verborgen werden können. Diese Faltung ist nicht blos eine longitudinaler oder fächerartige, sondern meist noch eine transversale oder Querfaltung, und wo diese eintritt, wie bei manchen Blattiden und Hemipteren (*Coptosoma*), muss nothwendigerweise der normale Aderverlauf mehr minder alterirt werden. Aus diesem Grunde schon bildet der Käferflügel mancherlei Schwierigkeiten bei der Deutung der einzelnen Adern, umso mehr, als die Faltung nach verschiedenen Methoden erfolgen kann. Tritt in Folge geringer Grösse des Flügels noch eine Reduction der Adern hinzu, dann ist es oft geradezu unmöglich, die einzelnen Adern zu deuten. Auf den Deckflügeln erscheinen durch die starke Verhornung die einzelnen Adern mehr minder undeutlich, oft nur durch Punktstreifen und schwache Furchen angedeutet; dennoch lassen sich nach Herr (l. c.) auch hier die einzelnen Adern, wenn auch oft nur schwierig, unterscheiden. Da jedoch die Nervatur der Deckflügel für die Systematik von untergeordnete Bedeutung sein kann, wird im Folgenden nur von den Hinterflügeln die Rede sein.

Nach dem oben Gesagten ist bei jenen Käfern, deren Hinterflügel irgendwie der Quere nach gefaltet werden, ein normaler Aderverlauf schon von vorneherein nicht zu erwarten; glücklicherweise ist dies nicht bei allen Käfern der Fall, sondern einige wenige Arten zeigen blos der Länge nach gefaltete Flügel, und bei diesen ist der Verlauf der Adern auch sehr einfach.

Am Flügel von *Atractocerus* z. B. erkennt man die Costa und den Radius, die so dicht nebeneinander verlaufen, dass die Subcosta, die einzige Concavader des ganzen Flügels, auf einen schmalen Raum eingeengt wird. Die nächste Convexader entspringt mit sehr feiner Wurzel, ist vorne und hinten von einer Concavfalte begleitet und durch
eine Querader mit dem Radius verbunden. Sie stellt die V. Ader dar. Der Cubitus ist
eine zweizinkige Gabel, deren Stiel gemeinsam mit der in der Mitte angeschwollenen
IX. Ader entspringt. Die folgende Ader (XI) ist von der Wurzel an in zwei weit diver-
girende Aeste geteilt, deren vorderer wie die IX. Ader in der Mitte verdickt erscheint
und sich an die Anschwellung derselben dicht anlegt. Die zwischen den einzelnen Con-
ve xadern verlaufenden Concavfalten lassen sich leicht als Reste der IV.—X. Ader er-
ennen, während hinter dem Vorderast der XI. Ader eine Convexfalte sichtbar ist, längs
welcher sich das Analfeld nach unten umschlägt.

Vergleicht man mit dem Flügel von *Atractocerus* denjenigen von *Cam pylus denti-
collis* oder einer verwandten Art, so zeigt sich bereits ein wesentlicher Unterschied.
Costa und Radius nebst der eingeschlossenen Subcosta sind leicht wieder zu erkennen.
Dagegen erscheint der Raum zwischen Radius und der folgenden Convexader (V) be-
deutend breiter als bei *Atractocerus*, weshalb hier noch zwei abgekürzte Längsadern ein-
geschaltet sind, welche in der Regel als »rücklaufende« Adern bezeichnet wurden. Ich
halte sie für nichts Anderes als Aeste des Radius, resp. der V. Ader, welche sich vor dem
Ende mit der Hauptader vereinigen, wie dies z. B. auch bei der V. Ader im Hinterflügel
von *Belostomum* etc. der Fall ist; die Wurzel dieser Aeste aber wird ausgelöscht durch
die concave Falten, welche zwischen Hauptader und Nebenanast verlaufen. Zwischen
Radius und seinem Aste ist wie bei den meisten Käfern eine Querader vorhanden, ebenso
zwischen den beiden »rücklaufenden« Adern, während zwischen V. Ader und ihrem
Vorderast eine solche nur angedeutet ist. Dass zwischen den rücklaufenden Adern viel-
leicht noch andere Aeste des Radius eingeschaltet sein können oder konnten, schliesse
ich erstens aus den »Strahladern«, undeutlichen, hornigen Streifen, welche im Apical-
theile des Flügels divergirend verlaufen und als Reste von aufgelösten Convexadern an-
zusehen sind (Adolph), ferner aus einem breiten trüben Streifen, welcher häufig zwischen
jenen Aesten gegen die Flügelbasis zu verläuft und außerdem von ihnen durch eine Con-
cavfalte getrennt ist. Da nach der Entstehung des Flügels zwei concave Adern nicht un-
mittelbar auf einander folgen können, sondern durch eine Convexlinie getrennt sein
müssen, so ist anzunehmen, dass jener hornige Streifen einer oder vielleicht sogar meh-
reren erloschenen Convexadern entspricht. Bei der Faltung des Flügels legt sich die
V. Ader genau auf den Radius, das dazwischenliegende Feld aber wird nicht blos einfach
der Länge nach zusammengelegt, sondern der Apicaltheil ausserdem auf eine ziemlich
complicirte, durch Worte schwer wiederzugebende Art gefaltet. Diese Faltung ist auch
die Ursache, warum die Querader zwischen den beiden »rücklaufenden« Adern mehr
minder unterbrochen erscheint, die Strahladern im Apicaltheil fächerartig gestellt und
durch Falten von einander getrennt sind, so dass sie mit dem oben erwähnten hornigen
Streifen nicht mehr in dem ursprünglichen Zusammenhange stehen. — Der Cubitus ist
wie bei *Atractocerus* gegaubt, durch eine Querader mit der V. Ader sowohl als mit der
folgenden Convexader verbunden, gleichzeitig aber durch Concavfurchen von ihnen
getrennt; er entspringt mit ausgelöschter Wurzel, nicht wie bei *Atractocerus* aus der
IX. Ader. Diese ist, wie der Cubitus, gegaubt, mit einer Querader zwischen den beiden
Zinken und durch eine schiefe Querader mit der weitgespaltenen XI. Ader in Verbindung.
Ausser der abgekürzten Subcosta sind wieder sämmtliche Convexadern durch Falten ersetz.

Von diesen beiden Flügeltypen lassen sich die Flügel der meisten übrigen Coleo-
peteren ohne Schwierigkeit ableiten, nur kleine Individuen mit reduziertem Geäder sind
oft schwer oder gar nicht zu entziffern. Vergleicht man das Geäder von *Atractocerus*
mit dem von *Oligoneura*, so ergibt sich eine überraschende Ähnlichkeit; so wenig ein
Käfer mit einer Ephemeride verwandt sein kann, so sicher müssen wir aus dieser

Die Cicindeliden zeigen am Ende des Radius ein ovales durchsichtiges Feld, dagegen fehlt ihnen das Oblongum, indem nur eine Querader zwischen den beiden Aesten der V. Ader ausgebildet ist. Das keilförmige Feld ist klein, viereckig, die XI. Ader wie bei Pelobius. — Paussus zeigt ein ähnliches Geäder wie Gyrrinus. Das Oblongum ist klein, eiförmig, der Vorderast der XI. Ader legt sich eine Strecke an das keilförmige Feld der IX. Ader an. Die V. Ader setzt sich bis zum Flügelsaume fort, dagegen treten nur zwei Strahladern auf, die eine vom Radius, die andere vom Oblongum ausgehend. — Rhysodes erinnert an die Cicindeliden durch das Fehlen des Oblongums; die IX. Ader erscheint einfach.

Die Staphyliniden bilden mit den Pselaphiden, Scydmaeniden, Clavigeriden, Histeriden, Silphiden und Scaphidiiden eine Gruppe, welche durch ein gleiches oder ähnliches Flügelgeäder ausgezeichnet ist, und an welche sich vielleicht noch die Clambiden und Trichopterygier anschliessen. Obach die Corylophiden mit jener Gruppe verwandt sind, kann bei der winzigen Grösse der Flügel und der damit verbundenen Reduktion des Geäders nicht bestimmt behauptet werden. Die Faltung der Flügel ist in dieser Gruppe dadurch eine eigenthümliche, dass das Gelenk nicht wie bei den Adephagen und Hydrophiliden nahe der Spitze liegt, sondern mehr gegen die Flügelbasis gerückt ist, so dass der Flügel zweimal der Quere nach gefaltet wird, wodurch der Apicaltheil des Flügels wieder nach vorne umgeschlagen wird. Herr bezeichnet diese Art der Faltung als die gegenläufige (anatropic), während jene der Carabiden, Dytisciden, Hydrophiliden etc. als querläufig bezeichnet wird. Eine scharfe Grenze lässt sich jedoch zwischen diesen beiden Faltungsformen nicht ziehen, da die Lage des Gelenkes eine wechselnde ist, und je mehr dasselbe gegen die Flügelspitze rückt, desto
mehr nähert sich die anatrophe Faltung der querläufigen. Ueberdies ist bei verkümmerten Flügeln die Spitze blos etwas eingebogen, wie bei _Phosphuga atrata, obscura_ etc.

Die Nitiduliden nehmen eine zweifelhafte Stellung ein, scheinen mir aber in Bezug auf das Flügelgeäder noch am meisten Aehnlichkeit mit den Silphiden, Histeriden etc. zu haben. Bei _Soronia grisea_ sind Costa und Radius wie bei jenen gestaltet. Vom

Auch die Phalacriden, deren kleine Flügel ein sehr reduciertes Geäder zeigen, scheinen mir den Trogositiden näher zu stehen als den Nitiduliden. Phalacrus zeigt Radius und Costa bald nach ihrem Ursprung verwachsen und nicht über das Gelenk fortgesetzt. Die V. Ader besitzt einen kurzen Vorderast, der in Form eines Hakens gegen die Flügelwurzel läuft. Der Radius gibt keinen Hinterast ab, weshalb auch eine Endzelle nicht ausgebildet sein kann. Cubitus und IX. Ader sind als blasse, einfache Adern entwickelt; Strahladern fehlen.

Wie schon Burmeister angibt, zeigen die Cryptophagiden Verwandtschaft zu den Nitiduliden, weichen aber doch in manchen Punkten von denselben ab. Vor Allem ist sowohl am Radius als auch an der V. Ader ein paralleler Ast erkennbar, der mit der Hauptader durch eine schiefere Querader verbunden ist. Dagegen fehlt eine Querader zwischen diesen beiden Aesten völlig, während sie bei den Trogositiden bald mehr, bald minder deutlich entwickelt ist. Die V. Ader ist in der Mitte unterbrochen, setzt sich aber dann als schwacher Chitinstreifen fort. Der Cubitus ist hier dreizinkig und durch eine Querader mit der einfachen IX. Ader verbunden. Die XI. Ader steht durch eine kurze Querader mit IX in Verbindung.

Von den Colydiern zeigt eine australische Species namentlich durch den Besitz der Endzelle am Radius und den Verlauf des Cubitus grosse Ähnlichkeit mit den
Trogositiden. Schon bei dieser Art endet die vordere Cubitalzinke in einen blassen, verschwommenen Hornfleck. Noch viel deutlicher ist dieser Flecken bei *Colydium elongatum*, *Tarphiodes* etc. sichtbar, liegt aber hier vor dem Cubitus und wird von der VI. Ader entsprechenden Concavialte in der Mitte in Form einer blassen Linie durchbrochen. Diesen beiden Gattungen fehlt die Endzelle des Radius, dagegen ist namentlich bei *Tarphiodes* die Querader zwischen Radius und V. Ader deutlich entwickelt und lang. Der gegabelte Cubitus ist durch eine Querader mit der keilförmigen Zelle der IX. Ader verbunden und diese steht wieder durch eine kurze Querader mit der zweitheiligen XI. Ader im Zusammenhang. — Auch bei *Mycetophagus*, *Triphyllus* ist der Bau des Geäders ähnlich wie bei den Trogositiden; die Endzelle des Radius entwickelt, aber sehr klein, dafür aber die Querader zum Vorderast der V. Ader sehr lang. Vor dem gegabelten Cubitus befindet sich auch hier ein verschwommener Chininflecken. Sehr deutlich tritt derselbe bei *Byturus* und *Diplocoelus* auf, von denen ersterer schon von Burmeister in die Nähe der Trogositiden und Mycetophagiden gestellt wurde. Die Endzelle des Radius, die Querader, sowie überhaupt das Geäder ist bei *Byturus* ähnlich wie bei den genannten Familien. Charakteristisch ist, dass die Zelle der IX. Ader so weit gegen die Flügelbasis rückt, dass die vom Cubitus entsendete Querader die IX. Ader weit unterhalb jener eingeschlossenen Zelle trifft. *Diplocoelus fagi* stimmt im Geäder so vollkommen mit *Byturus* überein, dass ihre von Ganglbauer entdeckte Verwandtschaft wohl ausser Zweifel ist.

Schon Burmeister stellte die Lathridier in die Nähe der Trogositiden, Mycetophagiden etc. Das reduzierte Geäder ihrer kleinen Flügel macht es aber unmöglich, die Verwandtschaft in Bezug auf das Geäder zu untersuchen. Ausser dem Radius nämlich zeigt *Corticaria* nur die V. Ader mit einem kurzen, undeutlichen Haken, ferner den einfachen Cubitus. Ein ähnlicher Haken wie an der V. Ader entspringt auch am Ende des Radius, ohne eine Zelle zu bilden. Die Querader fehlt. Zwischen Cubitus und V. Ader ist hier wie bei *Colydium* etc. ein undeutlicher Chininflecken sichtbar, der jedoch nur schwach ausgebildet ist. Viel deutlicher erscheint derselbe bei Cis, welches auch sonst im Geäder mit *Corticaria* derartig übereinstimmt, dass eine Vereinigung beider Gattungen vielleicht nicht unbegründet wäre.

Thorictiden von mir nicht untersucht.

Dermestes zeigt mit Ausnahme der kleinen Endzelle des Radius fast vollkommen das Geäder von *Campylus* etc. Die Querader zwischen Cubitus und IX. Ader geht hier nicht von der Gabel, sondern vom Stamm des Cubitus aus. Die IX. Ader entendet eine Querader direct zur V. Ader, und die hintere Zinke der XI. Ader bildet wie bei den Adephagen eine bogenförmige Schleife.

Die Byrrhididen werden von Burmeister in die Nähe der Dermestiden gestellt, unterscheiden sich aber doch im Flügelgeäder ziemlich bedeutend von denselben. *Noso-
dendron zeigt eine grosse dreieckige Endzelle des Radius, der vordere Ast der V. Ader (V₁) ist sehr kurz. Die IX. Ader zeigt in der Mitte eine kleine eingeschlossene Zelle, von welcher einerseits eine schief Querader zur Gabel des Cubitus, anderseits zur IX. Ader führt, deren Hinterast verkümmert ist. Bei Byrrhus ist die Endzelle des Radius klein, schiefl dreieckig, beide rücklaufenden Adern sehr kurz, die IX. Ader einfach und durch eine schief, lange Querader, welche fast den Charakter einer Längsader annimmt, mit der zweiteiligen XI. Ader verbunden. Bei Chelonerium sind die rücklaufenden Adern (III₁ und V₁), besonders letztere viel stärker entwickelt als bei Byrrhus, daher auch die Endzelle grösser. Die IX. Ader gibt eine vordere, rechtwinkelig geknickte Zinke ab, welche mit dem abgekürzten Stamm des Cubitus durch eine Querader verbunden ist. XI. Ader wie bei Byrrhus.

Syntelia histeroides und Sphaerites glabrus zeigen eine unverkennbare Ähnlichkeit des Geäders mit den Lamellicorniern; wie Lewis angibt, dürften daher diese beiden Formen wirklich mit den Lamellicorniern verwandt sein. Ein wesentlicher Unterschied liegt jedoch darin, dass bei Syntelia und Sphaerites die Querader zwischen Radius und V. Ader mehr minder deutlich entwickelt ist. Cubitus und IX. Ader einfach, letztere wie bei den meisten Lamellicorniern durch eine Querader mit der zweiteiligen XI. Ader in Verbindung.

Die Buprestiden erweisen sich gerade durch das Flügelgeäder als mit den Elateriden, in deren Nähe sie auf Grund der äusseren Körperform häufig gestellt werden,
Vergleichende Studien über das Flügelgeäder der Insecten.

nicht verwandt. Nach Heer sind sie durch die geradläufige oder orthotrope Flügel-Faltung ausgezeichnet, indem sich die Flügel vorwiegend der Länge nach zusammenlegen, so dass die V. Ader auf die Costa zu liegen kommt. Indessen wird auch hier die Flügelspitze etwas eingebogen, und damit ist eine strenge Unterscheidung zwischen querläufiger und geradläufiger Faltung unmöglich gemacht. Die Endzelle des Radius erscheint bei den Buprestiden stets sehr schmal, die rücklaufenden Adern convergiren nach rückwärts, die Strahladern sind schwach ausgebildet. Der Cubitus ist stets dreizinkig und durch eine Querader mit V verbunden, die IX. Ader jegelbt und beide Aeste entweder frei (Julodis) oder zur Bildung einer eingeschlossenen Zelle wieder ver- einigt (Ancylocheira, Chalcephora etc.). XI. Ader zweitheilig, der Vorderast durch eine Querader mit der IX. Ader verbunden. Ancylocheira weicht insoferne von Julodis etc. ab, als zwischen den beiden rücklaufenden Aesten eine Spur einer Querader sichtbar ist.

Rhipicera erinnert durch den Bau des Cubitus, sowie der IX. und XI. Ader vollkommen an Ancylocheira etc., dagegen ist die Endzelle des Radius dreieckig, die hintere rücklaufende Ader fast bis zur Flügelwurzel verlängert, und der Apicalteil wie bei den Adephagen, d. i. querläufig gefaltet.

Unter den Dascilliden stimmt Atopa cervina im Flügelgeäder ausserordentlich mit Rhipicera überein. Bei Helodes dagegen ist die Endzelle des Radius gross, unregel-
mässig fünfeckig, die hintere rücklaufende Ader kurz; ferner ist die eingeschlossene Zelle der IX. Ader gegen die Flügelbasis hinaufgerückt, der Cubitus aus drei getrennten Zweigen gebildet, deren längster aus der erwähnten Zelle entspringt. Der Hinterast der XI. Ader bildet eine Bogenschleife. Bei Scyrites sind Cubitus, IX. und XI. Ader ziemlich reduziert, daher nicht sicher zu deuten. Eucinetus erinnert durch die rechtwinkligen Fortsätze des Radius und der V. Ader an Melanis; der Cubitus ist gebogen, die IX. Ader schliesst eine elliptische Zelle ein und steht mit der XI. durch eine schiefе Querader in Verbindung.

Die Cleriden zeigen ein ziemlich variables Geäder, welches einerseits an die Meliriden (Danacae), anderseits auch an Lymexyloiden erinnert. Die rücklaufenden Adern sind kurz, die Endzelle des Radius klein, dreieckig, die Querader ziemlich deutlich. Von Strahladern ist hier sowohl als bei den Apatiden nur eine deutlich entwickelt. Bei Clerus ist der Cubitus aus zwei Zinken gebildet, die durch zwei Queradern unter einander, ferner durch je eine Querader mit der V. Ader und der einfachen IX. Ader verbunden sind, während der gemeinschaftliche Stamm fehlt. XI. Ader zweiteilig, der Vorderast durch eine kurze Querader mit IX. verbunden. Bei Trichodes ist der Hinterast des Cubitus derartig durch eine schiefе Querader mit IX. verbunden, dass er fast als Vorderast derselben betrachtet werden könnte.

Lymexylon schliesst sich am nächsten an Trichodes; doch ist V₁ viel länger als bei Cleriden, die IX. Ader umschliesst eine längliche Zelle, an welche sich der Vorderast der XI. Ader dicht anlegt. — Apate, Psoa, Ligniperda etc. sind ausgezeichnet dadurch, dass der Radius am Ende sich einwärts biegt, so dass vor der kleineren dreieckigen Endzelle noch ein kleiner, häufiger Saum sichtbar ist. V₁ krümmt sich im Bogen nach rückwärts, ist aber nur kurz; Cubitus gebogen, bei Ligniperda beide Aeste getrennt, aber mit kurzen Ansätzen zu einer Querader. IX. Ader mit eingeschlossener Zelle, durch eine lange, schiefе Querader mit XI. in Verbindung, deren Hinterast bei Ligniperda angelartig am Ende gekrümmt ist.

Hedecatonus stimmt mit Ausnahme des dreizinkigen Cubitus vollkommen mit Apate überein.

Pinus zeigt ein stark reduzirtes Geäder, welches daher keinen sicheren Aufschluss gibt; doch dürften die Piniden und Anobium mit den Apatiden verwandt sein.

Die Heteromeren bilden eine sowohl durch die Zahl der Fussglieder als auch durch das Flügelgeäder ziemlich übereinstimmende natürliche Gruppe. So zeigen namentlich die Oedemeriden, Meloiden, Pythiden, Lagriden und Pyrochroiden fast dasselbe Geäder, während andererseits die Tenebrioniden mit den Melandryiden und Cisteliden übereinstimmen. Die Anthiciden und Pediliden scheinen sich mehr der ersten Gruppe, die Mordelliden den Melandryiden zu nähern. Die rücklaufenden Adern sind bei der ersten Gruppe meist deutlich ausgebildet, die hintere gewöhnlich viel länger als die vordere. Die Endzelle des Radius meist klein, nur bei Mordella erreicht sie eine bedeutendere Grösse, bei Tetratoma ist sie undeutlich entwickelt. Strahladern 2—3, aber stets sehr verschwommen. Der Cubitus ist regelmässig gebogen, durch Queradern mit der V. und IX. Ader verbunden, die Wurzel desselben bald mehr bald weniger ausgelöscht. Die IX. Ader schliesst in der Regel die eiförmige oder lanzettliche Zelle ein, bei Mordella und Hallomenus ist sie einfach; XI. Ader stets zweiteilig, gewöhnlich durch eine schiefе Querader mit der IX. verbunden. Tetratoma zeigt zwischen V. Ader und Cubitus einen ähnlichen Chitinleck wie die Colyder etc., bei Eustrophus ist derselbe kaum erkennbar. In der zweiten Gruppe ist die vordere, rücklaufende Ader oft sehr kurz (Lagriden) oder sie fehlt ganz (Notoxus, Zonitis, Epicauta); bei letzterer
ist auch die hintere (V_1) winzig, während sie sonst kräftig entwickelt ist. Strahladern
wie bei der ersten Gruppe meist undeutlich. Cubitus bald gegabelt (Oedemeriden, Pythiden, Pyrochroiden etc.), bald einfach (Epicauta, Zonitis, Notoxus). IX. Ader
ursprünglich mit eingeschlossener Zelle, die aber durch Verkümmerung des Hinterastes
verschwindet (Notoxus) oder nur angedeutet ist (Epicauta, Zonitis). XI. Ader wie bei
der ersten Gruppe.

Von den Telephoriden, Elateriden etc. sind die Heteromeren im Flügel
vorwiegend durch den Bau der IX. Ader verschieden; dennoch liegt die Vermuthung
nahe, dass namentlich die weichflügeligen Lampyriden und Telephoriden mit den Melandyiden und Meloiden etc. aus gemeinsamer Wurzel entstanden sind, und dass sie die
Stammformen für alle Käfer mit hornigen Flügeldecken bilden, demnach viel älter als
diese sein müssen, eine Vermuthung, welche von Roger auch auf Grund der Ausbildung
des Bauchgangliensystems ausgesprochen wurde.

Sowohl durch den Bau der Mundtheile, als auch durch die Larvenform erweisen
sich die Curculioniden, Brenthiden, Bruchiden und Scolytiden als näher miteinander verwandt, zeigen jedoch in den Einzelheiten des Flügelgeäders einen solchen
Wechsel, dass ausser der lanzettlichen Gestalt des Flügels und der stets unverzweigten
IX. Ader kaum ein gemeinschaftliches Merkmal zu erkennen ist. Während die Curculioniden
theilweise an die Cerambyciden, die Bruchiden an die Chrysomeliden erinnern, zeigen
die Scolytiden und Brenthiden einen ähnlichen Bau des Flügelgeäders wie die Histeriden
und Silphiden. Die rücklaufenden Adern fehlen völlig bei Bostrychus, bei Bruchus
ist nur die hintere (V_1) vorhanden, aber kurz; bei den Curculioniden und Brenthiden
sind zwar beide ausgebildet, aber nur von geringer Länge. Die Querader zwischen beiden
ist entweder sehr blass und undeutlich (Caryoborus, Hylobius, Rhinomacer etc.), oder
sie fehlt vollständig (Rhyphochorpus, Brenthus, Bruchus). Die Endzelle des Radius ist
zwar vorhanden, aber klein bei Attelabus, Rhychnites, Hylobius, Rhinomacer, Caryo-
borus, sie ist gegen die Flügelspitze offen bei Anthribus und Platyrhinus und fehlt voll-
ständig den Scolytiden, Brenthiden und Bruchus. Strahladern sind meist zwei vorhanden,
oft aber sehr blass und undeutlich. Der Cubitus fehlt vollständig bei Bostrychus,
Dendroconus, Rhyschochorus, oder erscheint als ein einfaches oder doppeltes Strichel
bei Attelabus, Hylobius, Anthribus, Brenthus, Bruchus, selten ist er gegabelt (Rhino-
macerus). IX. Ader stets einfach; die XI. Ader fehlt bei Bostrychus und Brenthus, meist
ist sie zweiteilig und der Vorderast entweder unmittelbar mit der IX. Ader zusammen-
gewachsen (Bruchus, Eutrichelus, Anthribus), oder durch eine Querader mit ihr verbun-
den (Rhinomacer), oder frei (Attelabus, Hylobius, Rhychnites, Dendroconus). Der
Hinterast der XI. Ader fehlt bei Rhynchochorus und Dendroconus. Das Flügelgeäden
liegt entweder in der Mitte oder gegen die Flügelbasis zu.

Das Geäder der Cerambyciden stimmt mit dem der Chrysomeliden derart
überragen, dass strenge Unterschiede nicht zu finden sind. Im Allgemeinen liegt das Gelenk
bei den Cerambyciden nahe der Flügelspitze, weshalb der Apicaltheil verhältnismässig
klein erscheint, während bei den Chrysomeliden das Gelenk gegen die Flügelmitte ge-
rückt, der Apicaltheil daher viel grösser erscheint. Die Cerambyciden besitzen ferner nur
mit einzelnen Ausnahmen (Tricenotoma) eine ungeheuere IX. Ader, während dieselbe
bei einem beträchtlichen Theile der Chrysomeliden eine grosse, eingeschlossene Zelle
zeigt. Die rücklaufenden Adern sind stets entwickelt, aber kurz, die Querader zwischen
denselben meist undeutlich, oft nur als helle Linie angedeutet. Die Endzelle des Radius
ist meist vorhanden, klein, dreieckig, fehlt dagegen bei Molochrus minor und Parandra
grandis. Strahladern sind gewöhnlich zwei vorhanden, oft aber die vordere undeutlich.

Eine merkwürdige Form bildet Nillo, deren Flügel durch das eingebogene Ende des Radius und die Form der V. Ader dem der Apatiden ähnelt, während Cubitus und IX. Ader an Polychalca, Aplosoma und die Coccineilliden erinnern.

Die Erotyliden zeigen im Flügelgeäder den Typus der Melandryiden, Cisteliden und Tenebrioniden mit kaum merklichen Abänderungen, so dass es geradezu unmöglich ist, einen unterscheidenden Charakter zwischen beiden anzuzeigen.

Einen ganz eigenthümlichen Bau zeigen die Flügel der Endomychiden, die sich in Folge der Reduction, welche das Geäder zeigt, mit keiner der oben angeführten Familien vergleichen lassen. Die rücklaufenden Adern sind kurz, blass und convergiren unter einem spitzen Winkel. Die Querader zwischen beiden fehlt ebenso wie die Endzelle des Radius. Strahladern sind nicht oder nur sehr undeutlich ausgebildet. Die IX. Ader ist S-förmig geschwungen, einfach, der Cubitus ein einfacher Strich, der entweder mit der IX. Ader in Verbindung ist (Endomychus sp.) oder nicht (Endomychus coccineus), der Vorderast der XI. Ader ist am Ende mit der IX. unmittelbar verwachsen, ihr hinterer Ast fehlt bei Endomychus coccineus vollständig.

Aus dem Gesagten wird ersichtlich, dass auch bei den Coleopteran eine solche Mannigfaltigkeit des Geäders besteht, dass es kaum möglich ist, eine scharfe Charakteristik für den Käferflügel festzustellen. Für die Mehrzahl der Käfer liessen sich etwa folgende Merkmale angeben: Radius mit der Costa in oder vor der Flügelmitte verwachsen, daher die Subcosta so eingeengt, dass sie leicht übersehen wird; die Flügelspitze nur von undeutlichen Chitinstreifen (Strahladern) durchzogen oder ganz ungeädet; V. Ader kräftig ausgebildet, selten einfach, meist aus zwei Aesten gebildet, welche sich
entweder in der Wurzelhälfte (Staphylinen etc.) oder in der Endhälfte vereinigen (Cam-
gylyus etc.); Cubitus verschieden gebildet, meist blass und zart, erscheint oft nur als ein
Anhängsel (Nebenader) der V. oder IX. Ader; diese einfach oder gegabelt, oder mit ein-
geschlossener Zelle (keilförmiges Feld), die XI. Ader aus zwei weit divergierenden Asten
bestehend, hinter dem Vorderast eine Convexfalze, längs welcher sich der Flügel nach
unten umschlägt. Mit Ausnahme des Cubitus sind alle Convexadern stark und kräftig
entwickelt, die Concavadern dagegen ausser der kurzen Subcosta durchwegs nur als
Falten ausgebildet.

Schon eine oberflächliche Betrachtung der Käferflügel lehrt jedoch, dass die an-
gegebenen Charaktere zwar für die Mehrzahl, aber nicht für die Gesamtheit der Käfer
zutreffen; der Flügel von Atractocerus allein beweist dies zur Genüge. Für kleinere
Gruppen wird sich daher das Flügelgeäder recht wohl verwenden lassen, wie ja z. B.
die Verwandtschaft von Paussus oder Rhysodes mit den Adephagen durch die Bildung
der V. Ader unzweifelhaft bewiesen wird, zur Charakteristik der ganzen Ordnung da-
gegen ist das Geäder allein nicht hinreichend. — Ebenso unmöglich erscheint es, auf
Grund des Flügelgeäders die Abstammung der ganzen Ordnung zu ermitteln. Mög-
lcherweise standen die Urformen der Käfer den Orthopteren nahe, einen sicheren
Beweis hiefür können wir jedoch nicht erbringen. Eigenthümlich ist, dass manche Carabiden (Silphomorpha etc.) im Habitus ungewöhnlich an Blattiden erinnern.

Es wäre sehr wünschenswerth, auch das Geäder der Strepsipteren genauer zu
untersuchen, leider stand mir aber kein Exemplar zu Gebote, welches eine halbwegs
sichere Deutung des Geäders erlauben hätte.

XVI. Hymenoptera.

Taf. XX, Fig. 152—160.

Adolph, Dr. E.: Nova acta der k. Leop.-Carol. Akad., XLI, pars II, Nr. 3 und 4, und XLVI, Nr. 2.

Schon bei den Trichopteren, Lepidopteren und Dipteren sind Fälle häufig, wo die
V. Ader entweder bedeutend abgekürzt oder vollständig ausgelöscht wird. Noch mehr
ist dies bei den Hymenopteren der Fall, bei denen der Ausfall der V. Ader mit wenigen
Ausnahmen ein geradezu typisches Merkmal des Flügelgeäders bildet.

Durch die relative Entwicklung des Analfächers im Hinterflügel erweisen sich die
tenhrediniden als Formen, welche den ursprünglichen Flügeltypus der Hymeno-
pteren noch am getreuesten beibehalten haben. Im Vorderflügel von Lyda verlaufen ausser
der Costa vier Convexstämme; der erste bildet am Ende das Pterostigma und ist als Radius
anzusehen. Kurz vor dem Pterostigma entsendet er nach rückwärts einen Ast (Sector, III3),
der durch eine Querader mit dem Pterostigma verbunden ist. Der zweite Convexstamm
endet in eine Gabel, deren Zinken durch eine Querader verbunden sind; er entspricht
dem Cubitus und steht durch eine Anzahl von Queradern mit den benachbarten Con-
 vexadern in Verbindung. Die dritte und vierte Convexader sind als IX und XI zu be-
zeichen und sind ebenfalls durch eine Querader verbunden. Von Concavadern ist blos
die Subcosta ausgebildet, alle übrigen durch Falten ersetzt. Eine derselben läuft dicht
vor der IX. Ader, durchbricht alle von ihr getroffenen Queradern und entspricht der
Analader. Zwei undeutliche Concavfalzen laufen zwischen den beiden Zinken des Cubitus
und deuten darauf hin, dass zwischen ihnen eine mittlere Convexzinke verloren gegangen
ist. Endlich verlaufen auch zwischen Sector und dem vorderen Cubitalast zwei Concav-
falten, die sich nach innen vereinigen und die von ihnen getroffenen Queradern durch-
schneiden. Sie entsprechen der IV. und VI. Concavader und nötigen zu der Annahme, dass zwischen ihnen ein ganzer Convexstamm, nämlich die V. Ader, ausgefallen ist. Von Queradern sind ausser den bereits genannten noch folgende vorhanden: Der Stamm des Cubitus gibt nach hinten zwei Queradern ab, eine dritte entspringt vom hinteren Aste desselben. Vom Radius weg entspringen aus einem gemeinschaftlichen Punkte zwei divergirende, kräftige Queradern, von denen die eine den Stamm, die andere den Vorderast des Cubitus trifft. Endlich entsendet der Sector radii noch drei Queradern, nämlich zwei zum vorderen Cubitalast, eine dritte gegen die äussere Zinke jener oben erwähnten zweispaltigen Querader. Mit Recht gibt Adolph (l. c.) an, dass diese Querader, welche bei vielen Hymenopteren drei Zinken, eine vordere, äussere und innere, besitzt, aus mehreren Queradern zusammengesetzt sein und ausserdem Reste einer verschwundenen Längsader enthalte, welche keine andere als die V. Ader sein kann, die bei den meisten Hymenopteren fast völlig verloren gegangen ist. Unzweifelhafte Beweise für ihre ursprüngliche Anwesenheit finden wir bei manchen Exemplaren von Ammophila dives Bruill., seltener auch bei Ammophila sabulosa L., indem sich hier zwischen den genannten Falten (IV und VI) wirklich Bruchstücke einer Längsader vorfinden, welche sich gegen die Flügelspitze als Convexfalke fortsetzt. Auch bei Stilbum splendidum läuft von der äusseren Querader zwischen Sector radii und Cubitus eine kurze Längsader gegen die Flügelspitze, und bei zahlreichen Hymenopteren findet sich an dieser Stelle eine Convexfalke als Rest der verschwundenen V. Ader. Dadurch erklärt sich nun auch die mächtige Entwicklung der genannten 2—3spaltigen Querader, welche demnach offenbar durch Vereinigung von wenigstens vier primären Queradern entstanden ist. Bei Cimbex und Tenthredo ist sie durch zwei schiefe, von einander getrennte Queradern ersetzt, von denen jede als aus zwei hintereinander gelegenen Queradern entstanden zu denken ist. Durch Aneinanderrücken verschmelzen diese beiden Queradern zunächst in einem Punkte (Lyda) oder in grösserer1 Ausdehnung und damit erhält man das Bild einer dreispaltigen Querader, wie sie bei Athalia und vielen anderen Hymenopteren auftritt; dass nun an der Bildung derselben auch Bruchstücke der verschwundenen V. Längsader theilgenommen haben, ist immerhin möglich, ja sogar wahrscheinlich. —

Im Hinterflügel von Lyda erkennt man leicht die concave Subcosta, sowie den Radius mit seinem Sector. Die IV. und VI. Ader sind wie im Vorderflügel durch Falten ersetzt, ausserdem der ganzen Länge nach vereinigt und so nahe an den Cubitus gerückt, dass dessen Vorderast theilweise ausgelöscht wird. Die beiden Aeste des Cubitus sind wie im Vorderflügel durch eine Querader verbunden und hinter denselben verläuft die Analader als Falte. Die IX. Ader ist von der Wurzel an in zwei Aeste getheilt, die sich jedoch vor dem Ende vereinigen; hinter ihr folgt eine Convexfalte, längs welcher sich wie bei den Coleopteren, Cicaden etc. das Analfeld nach unten umschlägt. Endlich folgt noch die einfache XI. Ader, von der IX. durch eine schwache Concavfalke getrennt.

Die übrigen Tenthrediniden zeigen im Wesentlichen dasselbe Geänder wie Lyda. Dadurch aber, dass Costa und Radius aneinander rücken oder geradezu verschmelzen, wird die Subcosta im Vorder- und Hinterflügel entweder völlig unterdrückt (Hylootoma), oder sie erscheint nur als Falte ausgebildet. Bei Hylootoma vereinigen sich Radius und Sector vor der Flügelspitze miteinander; bei Xyela Dalii erscheint der Sector gegabelt. Die innere Querader zwischen Radius und Cubitus ist nach hinten gegabelt oder dreizinkig bei Athalia, Fenusa etc.; der Stiel (die vordere Zinke) derselben fehlt bei Hylootoma, Lophyrus, Dolerus etc.; bei Cimbex u. a. trennen sich die beiden Zinken vollständig. Im Hinterflügel verlässt der Radius die Costa, mit der er ein kurzes Stück verschmolzen ist, wieder, um sich mit dem Sector vor dem Ende zu vereinigen (Athalia, Hylootoma).
Die dreispaltige Querader fehlt im Hinterflügel durchwegs. Die IV. und VI. Concavfalte sind bei *Lyda* und *Xyela* der Länge nach vereinigt, bei *Hyloptoma*, *Tenthredo*, *Athalia* etc. dagegen von der Mitte an getrennt. Die IX. Ader bildet bei *Xyela*, *Cimbex* etc. zwei von einander getrennte Aeste, die nur durch eine Querader verbunden sind.

Unter den Braconiden zeigen die grösseren Formen ein Geäder, welches sich leicht auf das der Tenthrediniden zurückführen lässt, während die kleineren Formen, wie *Microgaster*, durch Reduction fast den Typus der Cynipiden zeigen. Der Radius ist stets der Costa sehr nahe gerückt, der Sector oft am Ende ausgelöscht. Cubitus ohne Querader zwischen den beiden Zinken; IX. Ader einfach, XI. fehlt regelmässig. — Im Hinterflügel sieht man den Radius in der Mitte mit der Costa vereinigt, ferner den Sector, der durch eine Querader mit dem einfachen oder gegabelten Cubitus verbunden ist, endlich die einfache IX. Ader, die ebenfalls durch eine Querader mit dem Cubitus zusammenhängt. Von Concavfalten findet man die IV. und VI. im Vorder- und Hinterflügel bis zur Mitte vereinigt, ferner die Analader, und im Vorderflügel ausserdem noch zwei Falten zwischen den beiden Cubitalzinken.

Die Ichneumoniden zeigen im Allgemeinen das Flügelgeäder der Braconiden. Zwischen Sector radii und der vorderen Cubitalzinke ist bei *Hemistes* etc. eine einzige Querader, bei *Pimpla*, *Ephialtes* etc. sind deren zwei vorhanden, bei *Tryphon* etc. verschmelzen sie zu einer gegabelten Querader; bei *Poridon* berühren sich Sector und Cubitus
unmittelbar in einem Punkte, bei *Xylonomus* verschmelzen sie sogar eine kurze Strecke. Die äussere Zinke der dreispaltigen Ader ist bis auf ein kurzes Rudiment an der vorderen Cubitalzunge reduziert. Bei *Trogus* und *Tryphon* ist eine Spur einer mittleren Cubitalzunge vorhanden, die IX. Ader ist stets einfach, die XI. fehlt.

Unter den *Evania* schliesst sich *Aulacus* mit Ausnahme der vollständig entwickelten dreispaltigen Querader vollkommen an die Ichneumoniden an. Bei *Gasteruptio assicator* F. erscheint das Geäder insofern verändert, als der Stiel des Cubitus zweimal geknickt ist und die dreispaltige Querader unter gleichzeitiger Reduction der inneren Zinke sich an die erste Knickung des Cubitus derartig anlegt, dass eine kleine vierzellige Zelle zwischen beiden entsteht. Der Hinterflügel ist stark reduziert und zeigt blos eine Längsader (Cubitus?), dann eine Concav- und Convexfalze, welche als Reste der VIII. und IX. Ader aufzufassen sein dürften. — Eine ganz abweichende Form zeigt *Pelecinus politurator* Drury, indem vom Sector zwei lange, schiefe Adern nach entgegengesetzten Seiten ausgehen, ohne sich mit dem Cubitus zu verbinden. Ich meine jedoch nicht zu irren, wenn ich dieselben als abnorm entwickelte Querader ansehe, obwohl es nicht ausgeschlossen erscheint, dass auch die V. Ader an der Bildung derselben betheiligt ist.

Der *Formicidenflügel* zeigt im Wesentlichen das Geäder der vorhergehenden Familien. Bei *Formica fulginosa* Latr. berühren sich Sector und Cubitus unmittelbar, bei *Formica ruginodis* sendet die Querader einen schieb nach innen laufenden Zweig ab, der als eine zweite Querader anzusehen ist; bei *Formica ligniperta* ist die dreispaltige Querader durch eine einfache ersetzt, welche den vorderen Cubitalast trifft. 1—2 Queraden verbinden den Cubitus mit der einfachen IX. Ader, von welcher die Analader als Falte verläuft. Im Hinterflügel muss entweder der Sector radii als fehlend oder mit dem vorderen Cubitalast verwachsen angenommen werden; da die beiden Concav falten IV und VI fehlen, ist letztere Ansicht wahrscheinlicher. Der Stamm des Cubitus ist durch eine Querader mit der einfachen IX. Ader verbunden, vor welchen die Analader verläuft. Bei *Tetramorium* erscheint die IX. Ader abgekürzt, so dass sie mit dem Cubitus eine kleine eiförmige Zelle einschliesst, welche von einer Concav falte (VIII.) durchsetzt wird.

Der Flügel der *Chrysididen* weicht vom allgemeinen Typus durch den Mangel der Querader zwischen den beiden Cubitalzinken ab. Ausserdem fehlen die Querader zwischen Sector radii und Cubitus entweder vollständig (*Chrysis*) oder es ist nur eine einzige vorhanden, von welcher manchmal eine kurze Ader als Rest der V. Längsader entspringt (*Stilbum splendidum* F.). Der Hinterflügel ist noch mehr reduziert als der Vorderflügel, indem bei *Chrysis* der Sector nur durch eine Convexfalze angedeutet ist und der Cubitus entweder einfach ist (*Stilbum*) oder nur eine Spur von einer Gabel zeigt (*Chrysis*). Die IX. Ader ist einfach, die XI. fehlt im Vorder- und Hinterflügel.

Bei den *Scoliiden* bildet der Sector mit dem Radius eine rhombische Zelle, von welcher zwei Querader ausgehen, die äussere zum Vorderast des Cubitus, die innere zur dreispaltigen Ader. Bei *Tengyra* ist die IX. Ader im Vorderflügel abgekürzt und die Querader zwischen den beiden Cubitalzinken zeigt einen Ansatz zu einem Mittelaste. Bei *Mutila* etc. sind drei Queradern zwischen Sector und Cubitus entwickelt.

Bei den *Fossoria* verschmelzen Radius und Sector vor dem Ende und schliessen eine lange elliptische Zelle ein, welche der rhombischen von *Scolia* entspricht. Ausser der dreispaltigen Querader sind *Scoli* und Cubitus noch durch eine (*Crabro*) bis drei Queradern (*Ammophila, Pompilus, Pelepoaes etc.*) verbunden. Zwischen den beiden Cubitalzinken meist eine Querader. Bei *Ammophila dives* Brull. und *Ammophila sabulosa* L. findet sich, wie oben erwähnt, manchmal eine Spur der V. Ader. Im Hinter-
flügel ist der Cubitus gegabelt, ohne Querader zwischen den beiden Zinken, dagegen durch je eine Querader mit dem Sector und der einfachen IX. Ader verbunden. Bei *Oxytelus* ist im Vorderflügel der äussere Ast der dreispaltigen Ader reduziert, wie bei den Ichneumoniden. Bei *Sphex* tritt im Hinterflügel eine Andeutung einer mittleren Cubitalzinke auf; die XI. Ader fehlt oder ist nur durch eine Convexfalte angedeutet.

Die Vespiden und Apiden zeigen fast denselben Bau des Geäders wie die Fosoria. *Xylocopa* zeigt im Vorderflügel auch die XI. Ader ausgebildet, im Hinterflügel dagegen fehlt sie vollständig. Die IX. Ader erscheint bei *Vespa*, *Polistes* und *Xylocopa* im Hinterflügel ganz oder teilweise durch eine Convexfalte ersetzt. Bei *Apis, Bombus* etc. zeigt sich zwischen den beiden Cubitalästen eine Spur einer Mittelzinke, die jedoch nur als Convexfalte ausgebildet ist.

Direkte Verbindungen des Hymenopterenflügels zu dem anderer Insectenordnungen fehlen. Wenn auch, wie Brauer mit Recht angibt, die Bildung des Analfeldes an den Clavus der Hemipteren erinnert, so zeigen sich doch andererseits wieder so manigfaltige und erhebliche Verschiedenheiten im Flügelgeäder, dass an eine nähere Beziehung zwischen den beiden Ordnungen nicht zu denken ist. Namentlich ist es der Ausfall der V. Ader, durch welchen die Hymenopteren eher zu den Trichopteren und Panorpen, sowie zu den Dipteren und Lepidopteren Beziehungen zeigen. — Als charakteristisch für den Hymenopterenflügel ist vor Allem zu erwähnen, dass die Conovadern mit wenigen Ausnahmen durch Falten ersetzt sind, und dass die V. Ader ganz erloschen oder nur spurenweise angedeutet ist. Reste derselben sind auch vielleicht in der kräftigen, aus mehreren Queradern hervorgegangenen «dreispaltigen» Ader enthalten, von der einzelnen Zinke, namentlich die vordere und äussere (gegen die Flügelspitze gewendete) verschwinden können, so dass sie dann das Aussehen einer einfachen schiefen oder zweier divergierender Queradern annimmt. Das Analfeld erreicht nur im Hinterflügel der Tentrediniden und Uroceriden eine ansehnlichere Entwicklung. Im Vorderflügel bildet die Analader mit dem Radius einen viel spitzeren Winkel als bei den Dipteren oder Lepidopteren.

und scheinbar einfachem Geäder besitzen, welches aber in Wirklichkeit durch eine tiefgreifende Reduction aus einem viel reicheren hervorgegangen ist. Gerade das Gegenheil zeigen die Orthopteren, Neuropteren etc., deren zahlreiche Längs- und Queradern scheinbar oft einen viel complicirteren Verlauf nehmen, bei genauer Untersuchung aber sich leicht auf das erwähnte Schema zurückführen lassen; diese beiden Ordnungen besitzen auch noch einen deutlichen Rest des ursprünglichen Fächerflügels in dem mehr oder minder entwickelten Analfelde.

Bei der Mehrzahl der Insecten schliesst sich der Sector innig an den Radius; bei den Odonaten, Ephemereden und Dipteren aber erscheint derselbe vom Radius deutlich durch eine Concavader getrennt, und in diesem Falle läge es nahe, den Sector, gleich der V. Ader, als selbstständigen Adercomplex zu betrachten. Er würde dann mit V, die genannte Concavader (zweite Längsader der Dipteren, Sector principalis der Odonaten) mit IV zu bezeichnen sein; jede folgende Ader überhaupt erhielt eine Ziffer, die um zwei höher ist als in der von mir angewendeten Nomenclatur. Der Cubitus wäre demnach mit IX, die Analader mit X zu bezeichnen. Dass ich dennoch diese von Prof. Brauer akzeptierte Bezeichnungsweise nicht angewendet habe, hat darin seinen Grund, dass bei zahlreichen Insecten (Megalopteren, Lepidopteren etc.) Radius und Sector so innig miteinander verbunden sind, dass es oft unmöglich ist, beide von einander zu trennen.

Es liegt auf der Hand, dass die vorliegende Terminologie noch nicht zur Systematik innerhalb der einzelnen Ordnungen verwendet werden kann; sie muss zu diesem Zwecke von Fachmännern weiter ausgeführt und auch auf die Queradern und Flügelfelder ausgedehnt werden. Diese Arbeit aber würde meine Kraft sowohl als die mir zu Gebote stehende Zeit übersteigen, und aus diesem Grunde wird jeder Fachentomologe die bisher gebräuchlichen Nomenclaturen auch für die nächste Zukunft nicht entbehren können, so lange es sich um Unterscheidung von Arten, Gattungen etc. innerhalb einer und derselben Ordnung handelt. Wer jedoch vom vergleichenden Standpunkte aus die Insecten behandelt, wird die alte Terminologie über Bord werfen und sich einer einheitlichen, für alle Insectenordnungen geltenden Nomenclatur bedienen müssen. Auch innerhalb mancher Ordnungen wird eine Regeneration der bisherigen Terminologie unumgänglich nothwendig sein, namentlich dort, wo eine und dieselbe Concav- oder Convexader im Vorder- und Hinterflügel verschiedene Namen führt, ferner wo Theile einer und derselben Ader mit verschiedenen Namen belegt werden oder umgekehrt Theile verschiedener Adern mit denselben Namen bezeichnet erscheinen. Gerade in diesen beiden letzten Fällen wird eine übersichtliche, vergleichende Zusammenstellung der älteren Terminologie mit der von mir angewendeten eine äusserst schwierige und complicirte Aufgabe. Dennoch habe ich es versucht, um das Auffinden homologer Adern zu erleichtern, die für die einzelnen Insectenordnungen (im Sinne Brauer's) gebräuchlichsten Terminologien mit der von mir vorgeschlagenen tabellarisch nebeneinander zu stellen. Der Fachmann wird sich nach meiner Ansicht auch dort, wo diese Zusammenstellung Lücken hat, mit Hilfe der Abbildungen und des Textes zurecht finden.
Vergleichende Uebersicht über die Terminologie des Insectenflügels.

Odonaten (De Selys Longchamps):

I = Nervus costalis.
II = subcostalis.
III = medianus.
III₂ = Sector principalis.
III₃ = Sector intercalaris.
IV = nodalis.
V = subnodalis.
VI = medius.
VII = brevis.
VIII = trianguli superior.
IX = inferior.

Perliden (Brauer und LÖw):

I = Costa.
II = Subcosta.
III = Radius.
III₂ = Sector radii.
V = Cubitus anticus.
VII = posticus.

Ephemeriden (Eaton):

Vorderflügel:

I = Costa (1).
II = Subcosta (2).
III = Radius (3).
III₂ = Sector (4).
VI = Cubitus (5).
VII = Præbrachialis (6).
VIII = Postbrachialis (7).
IX = Analis (8).
X =
XI = Axillaris (9).

Hinterflügel:

I = Costa (1).
II = Subcosta (2).
III = Radius (3).
III₂ = Sector (4).
VI = Sector (4₁).
VII = Cubitus (5).
VIII = Præbrachialis (6).

Blattiden (Brunner v. Wattenwyl):

Vorderflügel:

II = Vena mediastina.
III = radialis = scapularis (Fischer).
V = Vena ulnaris anterior (bei Ectobia = Vena radialis) = Vena externomedia (Fischer).
VII = Vena ulnaris posterior (bei Ectobia = Vena ulnaris) = Vena internomedia (Fischer).
VIII = Vena dividens = Vena analis (Fischer).
IX = Vena axillaris.

Hinterflügel:

II = Vena mediastina.
III = radialis.
V = spuria (bei Ectobia = IV + VI).
VII = Vena ulnaris.
VIII = dividens.
IX = plicata.

Mantiden (Brunner):

Vorderflügel:

II = Vena mediastina (scapularis Fischer).
III = Vena radialis anterior (externomedia Fischer).
V = Vena radialis posterior (subexternomedia Fischer).
VII = Vena ulnaris anterior (internomedia + subinternomedia Fisch.).
VIII = Vena ulnaris posterior (analis Fischer).
IX = Vena dividens (rami venae analis Fischer).
XI = Vena plicata (axillaris Fischer).
Hinterflügel:

II = Vena mediastina.

III = • radialis anterior.

V = • radialis media.

VI = • radialis posterior.

VII = • ulnaris anterior.

VIII = • ulnaris posterior.

IX = • dividens.

XI = • plicata.

Vorderflügel:

I = Vena radialis (mediastina Fischer).

II = •

III = Vena ulnaris anterior (scapularis Fischer).

V = Vena ulnaris posterior (externomedia Fischer).

VII = Vena dividens (internomedia Fischer).

IX = Vena plicata (axillaris, analis Fischer).

Gryllodeen (Brunner):

I = Vena radialis (mediastina Fischer).

II = •

III = Vena ulnaris anterior (scapularis Fischer).

V = Vena ulnaris posterior (externomedia Fischer).

VII = Vena dividens (internomedia Fischer).

IX = Vena plicata (axillaris, analis Fischer).

Acridier (Brunner):

I = Vena mediastina.

II = • radialis anterior.

III = • media.

V = • posterior.

VII = • ulnaris anterior.

VIII = • posterior.

IX = Vena dividens.

XI = • plicata.

Locustiden (Brunner):

Vorderflügel:

I = Vena mediastina.

II = • radialis anterior (scapularis Fischer).

III = Vena radialis posterior (externomedia Fischer).

V = Vena ulnaris (internomedia Fischer).

VII = Vena dividens (internomedia Fischer).

Vorderflügel:

I = Vena analys Fisch.

IX = Vena axillaris (suturalis Fischer).

Fischer:

I = •

II = Vena scapularis.

III = • externomedia.

V = • subexternomedia.

VII = • internomedia.

VIII = • subinternomedia.

IX = • analis.

XI = • axillaris.
Embiden (Wood-Mason):

<table>
<thead>
<tr>
<th>Romanzahl</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Vena costalis</td>
</tr>
<tr>
<td>II</td>
<td>subcostalis</td>
</tr>
<tr>
<td>III<sub>1</sub></td>
<td>radialis</td>
</tr>
<tr>
<td>III<sub>2</sub> + V + VII</td>
<td>Vena discoidalis</td>
</tr>
<tr>
<td>IX</td>
<td>Vena analis</td>
</tr>
</tbody>
</table>

Pseudiden (Brauer und Löw):

<table>
<thead>
<tr>
<th>Romanzahl</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Costa</td>
</tr>
<tr>
<td>II</td>
<td>Subcosta</td>
</tr>
<tr>
<td>III</td>
<td>Radius</td>
</tr>
<tr>
<td>V</td>
<td>Sector radii</td>
</tr>
<tr>
<td>VII</td>
<td>Cubitus + hinterer Ast des Sector radii</td>
</tr>
<tr>
<td>VIII</td>
<td>Cubitus posticus (postcosta)</td>
</tr>
</tbody>
</table>

Termiten:

<table>
<thead>
<tr>
<th>Romanzahl</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>Subcosta (Hagen), scapularis (Heer)</td>
</tr>
<tr>
<td>V</td>
<td>Mediana (Hagen), internomedia (Heer)</td>
</tr>
<tr>
<td>VII</td>
<td>Submediana (Hagen), externomedia (Herr)</td>
</tr>
</tbody>
</table>

Hemipteren (Fieber):

<table>
<thead>
<tr>
<th>Romanzahl</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>I + III</td>
<td>Costa primaria + Costa apicalis</td>
</tr>
<tr>
<td>V</td>
<td>Costa subtensa + Costa decurrens + Costa connectens + hamus</td>
</tr>
<tr>
<td>VII</td>
<td>Costae lineatae</td>
</tr>
<tr>
<td>IX + XI</td>
<td>Costae radiantes</td>
</tr>
</tbody>
</table>

Homopteren (Kolenati):

Vorderflügel:

<table>
<thead>
<tr>
<th>Romanzahl</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>Radius principalis</td>
</tr>
<tr>
<td>III<sub>1</sub></td>
<td>Sector apicalis</td>
</tr>
<tr>
<td>III<sub>2</sub></td>
<td>nodalis</td>
</tr>
<tr>
<td>V</td>
<td>Radius internodalis</td>
</tr>
<tr>
<td>V<sub>1</sub></td>
<td>Sector subnodalis</td>
</tr>
<tr>
<td>V<sub>2</sub></td>
<td>medius</td>
</tr>
<tr>
<td>VII</td>
<td>Radius medius + Sector brevis</td>
</tr>
<tr>
<td>VIII</td>
<td>—</td>
</tr>
</tbody>
</table>

Hinterflügel:

<table>
<thead>
<tr>
<th>Romanzahl</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>Radius principalis</td>
</tr>
<tr>
<td>III<sub>1</sub></td>
<td>—</td>
</tr>
<tr>
<td>III<sub>2</sub></td>
<td>—</td>
</tr>
<tr>
<td>V</td>
<td>Radius dichotomus</td>
</tr>
<tr>
<td>V<sub>1</sub></td>
<td>—</td>
</tr>
<tr>
<td>V<sub>2</sub></td>
<td>—</td>
</tr>
<tr>
<td>VII</td>
<td>Radius medius</td>
</tr>
<tr>
<td>VIII</td>
<td>— posticus</td>
</tr>
<tr>
<td>IX</td>
<td>— brevis</td>
</tr>
<tr>
<td>XI</td>
<td>— suturalis + arculus</td>
</tr>
</tbody>
</table>

Sialiden (Brauer und Löw):

<table>
<thead>
<tr>
<th>Romanzahl</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Costa</td>
</tr>
<tr>
<td>II</td>
<td>Subcosta</td>
</tr>
<tr>
<td>III</td>
<td>Radius + Sectoren</td>
</tr>
<tr>
<td>IV</td>
<td>Ramus thyrifer (cubiti antici)</td>
</tr>
<tr>
<td>V</td>
<td>Ramus divisorius</td>
</tr>
<tr>
<td>VII</td>
<td>Cubitus posticus</td>
</tr>
</tbody>
</table>

Megalopteren und Panorpaten:

<table>
<thead>
<tr>
<th>Romanzahl</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Costa</td>
</tr>
<tr>
<td>II</td>
<td>Subcosta</td>
</tr>
<tr>
<td>III</td>
<td>Radius + Sectoren</td>
</tr>
<tr>
<td>IV</td>
<td>—</td>
</tr>
<tr>
<td>V</td>
<td>Cubitus anticus</td>
</tr>
<tr>
<td>VII</td>
<td>— posticus</td>
</tr>
</tbody>
</table>

Phryganiden (Brauer und Löw):

Vorderflügel:

<table>
<thead>
<tr>
<th>Romanzahl</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX<sub>1</sub></td>
<td>—</td>
</tr>
<tr>
<td>IX<sub>2</sub></td>
<td>—</td>
</tr>
<tr>
<td>XI<sub>1</sub></td>
<td>—</td>
</tr>
<tr>
<td>XI<sub>2</sub></td>
<td>—</td>
</tr>
<tr>
<td>XIII</td>
<td>—</td>
</tr>
</tbody>
</table>
Hinterflügel:

I = Costa.
II = Subcosta.
III = Radius + Ramus discoidalis.
V = Ramus substiscoidalis.
VII = Cubitus posticus.
VIII = Costula trochlearis.
IX₁ = → gemina antica.
IX₂ = → postica.
XI₁ = → tendinis antica.
XI₂ = → media.
XIII = → postica.

Lepidopteren (Heinemann etc.):

II = Costalrippe.
III = Subcostalrippe, vordere (äussere) Mittelrippe.
IV, V und VI verschieden bezeichnet.
VII = Subdorsalrippe, hintere (innere) Mittelrippe.
VIII, IX und XI = Dorsalrippen.

Coleopteren:

Heer:

I = Costa.
II = Subcosta.
III = Radius.
V = Sector.
VII = Cubitus.
IX = Internomedia.
XI = Analis.

Kirby:

I = —
II = Neura mediastina.
III = Postcosta.
V = Externomedia.
VII = Internomedia.
IX = Neura analis.
XI = —

Dipteren:

Hagen:

I = Costa.
II = Subcosta.

III₁ = Mediana (Radius).
III₂ = Sector (Vorderast).
III₃ = Sector (Hinterast).
IV = Vorderast der Submediana.
V = —
VI = —
VII = Submediana.
VIII = Postcosta.
IX = —
X = —

Meigen:

I = —
II = Hilfsader.
III₁ = 1. Längsader.
III₂ = Stamm der 2. und 3. Längsader.
III₃ = 3. Längsader.
IV = 4. Längsader.
V = —
VI = —
VII = 5. Längsader.
IX = 7. Längsader.
X = —

Schiner (1864):

I = —
II = Mediastinalader.
III₁ = Subcostalader.
III₂ = Radialader.
III₃ = Cubitalader.
IV = Discoidalader (4. Längsader).
V = —
VI = Theilungsader.
VII = Posticalader.
VIII = Analader.
IX = Axillarader.
X = Angularader.

Hymenopteren:

Förster:

I = —
II = Vena intercalaris.
III₁ = → submarginalis.
III₃ = → radialis.
VII = → media.
VII₁ = Vena cubitalis + Vena transversodiscoidalis.
VII₂ = Vena media.
IX = postica.
XI = accessoria.
XIII =

Thomson:
I = Vena costalis.
II = mediastina.
III₁ = postcostalis.
III₂ = marginalis.
VII = cubitalis.
VII₁ = submarginalis + Vena basalis (recurrans).
VII₂ =
IX = Vena brachialis.
XI = humeralis.
XIII = axillaris.

Shuckard:
I = Vena costalis.
II =

III₁ = Vena postcostalis.
III₂ = radialis.
VII = externomedia.
VII₁ = cubitalis + Vena recurrens.
VII₂ = discoidalis + Vena subdiscoidalis.
IX = Vena analis.
XI =
XIII =

Schenck:
I = Vena marginalis.
II =
III₁ = submarginalis.
III₂ = radialis.
VII = Vena medialis.
VII₁ = cubitalis + Discoidal-Querader.
VII₂ = Vena discoidalis + Vena submedialis.
IX = Vena analis.
XI =
XIII =
Erklärung zu Tafel IX.

(Convexadern sind durch kräftige, Concavadern durch feine Linien bezeichnet; Concavfalten sind durch punktierte, Convexfalten durch Strichlinien angedeutet.)

Fig. 1. Hinterflügel von Forficula auricularia, ausgebreitet. V. = 7½.
Fig. 2. » » » » nach der ersten Faltung.
Fig. 3. » » » » nach der zweiten Faltung.
Fig. 4. » » » » vollkommen zusammengelegt.

Fig. 5. Flügel von Heptagenia forcipula. V. = 5.
Fig. 6. Vorderflügel von Oligoneura anomala Pict. V. = 4³/₄.
Fig. 7. » » Calopteryx splendens. V. = 2.
Fig. 8. » » Agrion sp. V. = 5.
Fig. 9. Flügel von Aeschna cyanea. V. = 2½.
Redtenbacher: Flügelgeäder der Insecten.

Tafel IX.

1.

2.

3.

4.

5.

6.

7.

8.

9.

Erklärung zu Tafel X.

Fig. 10. Flügel von *Nemura variegata*. V. = 5.
Fig. 11. » » *Pteronarcys reticulata* Burm.
Fig. 12. Vorderflügel von *Perla cephalotes*. V. = 2 1/3.
Fig. 13. Flügel von *Embia Savignyi*. V. = 6.
Fig. 14. » » *Periplaneta orientalis*. V. = 4 1/2.
Fig. 15. » » *Ectobia lapponica*. V. = 6.
Fig. 16. Hinterflügel von *Eleutherodea dytiscoides* Sew. V. = 2.
Fig. 17. Flügel von *Mantis religiosa*. V. = 2.
Fig. 18. Vorderflügel von *Tropidoderus Childreny* Gray (schem.).
Erklärung zu Tafel XI.

Fig. 19. Flügel von Prisopus Berosus Westw. V. = 1 \(\frac{1}{3}\) (schem.).

Fig. 20. \(\rightarrow\) Phyllum crurifolium Serv. V. = 1.

Fig. 21. \(\rightarrow\) Oecanthus pellucens. V. = 5.

Fig. 22. \(\rightarrow\) Gryllus campestris (♀).

Fig. 23. \(\rightarrow\) Decticus verrucivorus. V. = 4\(\frac{1}{2}\).

Fig. 24. \(\rightarrow\) Moristus spec. (V. = \(\frac{3}{4}\), schem.).
Erklärung zu Tafel XII.

Fig. 25. Flügel von *Phaneroptera falcata* Scop. V. = 2¹/₄.
Fig. 26. Vorderflügel von *Gryllacris* spec. nov. (schem.).
Fig. 27. Hinterflügel von *Ctenocnemus pallidus* Koll. (schem.).
Fig. 28. Vorderflügel von *Cryptophyllus perspicillatus* Burm. (schem.).
Fig. 29. Flügel von *Akicera euryscelis* Schaum. (schem.).
Fig. 30. Vorderflügel von *Thamnotrizon apterus* F. V. = 4³/₄. ♂.
Fig. 31. Flügel von *Bulla ocellata* Thunb. (schem.).
Fig. 32. → → *Psophus stridulus*. V. = 2¹/₄.
Fig. 33. Hinterflügel von *Petasia superba* Stal. (schem.).
Fig. 34. → → *Stenobothrus nigromaculatus* H.-Sch. V. = 4¹/₂.
Fig. 35. Flügel von *Termes lucifugus*. V. = 4.
Fig. 36. → → *Hodoterme brunneicornis* Hg. (schem.).
Fig. 37. → → *Calotermes nodulosus* Hg. (schem.).
Fig. 38. → → *Caecilius flavidus* Steph. V. = 9.
Erklärung zu Tafel XIII.

Fig. 39. Flügel von *Fulgora laternaria* L. V. = 1 (schem.).
Fig. 40. > » *Derbe ugyops* Guér. V. = 5½.
Fig. 41. > » *Aphrophora spumaria* V. = 5½.
Fig. 42. > » *Zammara strepens* Serv.
Fig. 43. > » *Centrotus cornutus* V. = 6½.
Fig. 44. > » *Pterochlorus longipes* Duf. V. = 7½.
Fig. 45. > » *Psylla alni* L. V. = 7½.
Fig. 46. Hinterflügel von *Plataspis coccinelloides* Lap. (schem.).
Fig. 47. Flügel von *Mormydea nigricornis* F. V. = 6.
Fig. 48. Hinterflügel von *Phymata erosa* Wolf. V. = 4½.
Fig. 49. > » *Calocoris vandalicus* Rossi. V. = 7½.
Fig. 50. Flügel von *Copius maculatus* Thunbg. V. = 5½.
Fig. 51. > » *Limnometra armata* Spin. V. = 6½.
Erklärung zu Tafel XIV.

Fig. 52. Hinterflügel von *Phloeogaster mammosus* Serv. V. = 4 1/4.
Fig. 53. Flügel von *Lygaeus equestris* L. V. = 6.
Fig. 54. > > *Notonecta glauca*. V. = 4 3/4.
Fig. 55. > > *Nepa rubra* L.
Fig. 56. > > *Corydalis* sp. (schem.).
Fig. 57. > > *Raphidia notata* F. V. = 7 1/4.
Fig. 58. > > *Sialis fuliginosa*. V. = 5.
Fig. 59. > > *Megalomus hirtus* F. V. = 5.
Fig. 60. Vorderflügel von *Nymphes myrmekleonides* Leach. (schem.).
Erklärung zu Tafel XV.

Fig. 61. Flügel von Dilar turcicus Hg. V. = 5.
Fig. 62. » » Cordulecerus vulpecula Burm. (schem.).
Fig. 63. » » Chrysopa vulgaris. V. = 5.
Fig. 64. » » Drepanicus Gayi Blanch.
Fig. 65. » » Mantispa styriaca. V. = 5.
Fig. 66. Hinterflügel von Azesia napoleo (schem.).
Fig. 67. Flügel von Palpares cephalotes Klug. (schem.).
Fig. 68. Vorderflügel von Panorpa montana. V. = 5.
Fig. 69. » » Philopotamus variegatus. V. = 5.
Erklärung zu Tafel XVI.

Fig. 70. Flügel von *Limnophilus griseus* L. V. = 4\(\frac{3}{4}\).
Fig. 71. » » *Leptocerus venosus* F. V. = 4\(\frac{1}{2}\).
Fig. 72. » » *Sphinx Galii*. V. = 1\(\frac{1}{2}\).
Fig. 73. » » *Hepialus sylvinus*. V. = 4\(\frac{3}{4}\).
Fig. 74. » » *Tinea vastella*. V. = 5\(\frac{1}{2}\).
Fig. 75. » » *Gonopteryx rhamni* L. V. = 1\(\frac{1}{2}\).
Fig. 76. » » *Cossus ligniperda* F. V. = 1\(\frac{1}{2}\).
Fig. 77. Hinterflügel von *Simaethys nemorana*.
Fig. 78. Flügel von *Zygaena minos*. V. = 4\(\frac{1}{2}\).
Fig. 79. » » *Bombyx mori*. V. = 2.
Erklärung zu Tafel XVII.

Fig. 80. Flügel von *Cerastis vaccinii*. V. = 4\(\frac{1}{4}\).
Fig. 81. Vorderflügel von *Brephos puella*. V. = 2\(\frac{3}{4}\).
Fig. 82. Flügel von *Sesia apiformis*. V. = 4\(\frac{1}{4}\).
Fig. 83. → → *Psychoda* sp. (Mexico). V. = 7\(\frac{1}{2}\).
Fig. 84. → → *Sciara viatica* Winn.
Fig. 85. → → *Ptychoptera* (n. Brauer).
Fig. 86. → → *Lonchoptera* sp. V. = 15.
Fig. 87. → → *Bibio hortulanus* L. V. = 6.
Fig. 88. → → *Tipula quadrifaria* (p. p. nach Adolph).
Fig. 89. → → *Stratiomyris furcata* F. V. = 6.
Fig. 90. → → *Tabanus* sp. V. = 5\(\frac{1}{4}\).
Fig. 91. → → *Coenomyia ferruginea* (n. Adolph).
Fig. 92. → → *Dolicopus*. V. = 7\(\frac{1}{4}\).
Fig. 93. → → *Usica aurata* F. V. = 7\(\frac{1}{2}\).
Fig. 94. → → *Anthrax flavus* Mg. V. = 4\(\frac{1}{2}\).
Fig. 95. → → *Syrophus pyrastris* L. V. = 6.
Erklärung zu Tafel XVIII.

Fig. 96. Flügel von *Tachina tesselata* F. V. = 6.

Fig. 97. » » *Trypeta arctii* Deg. V. = 7/2.

Fig. 98. » » *Ornithomyia avicularia*. V. = 7\r\n
Fig. 99. » » *Culex* (n. Brauer).

Fig. 100. » » *Empis ciliata* (n. Adolph).

Fig. 101. Hinterflügel von *Atractocerus*. V. = 4\r

Fig. 102. » » *Campylus denticollis*. V. = 4\r

Fig. 103. » » *Rhysodes exaratus* Illig. V. = 6.

Fig. 104. » » *Paussus armatus* Westw. V. = 4\r

Fig. 105. » » *Pelobius Hermanni*. V. = 5\r

Fig. 106. » » *Heterocerus marginatus*. V. = 5\r

Fig. 107. » » *Georyssus pygmaeus*.

Fig. 108. » » *Parnus prolifericornis*. V. = 7\r

Fig. 109. » » *Hydrophilus pistaceus*. V. = 1\r

Fig. 110. » » *Helophorus grandis*. V. = 6.

Fig. 111. » » *Emus maxillosus*. V. = 4\r

Fig. 112. » » *Clidicus grandis* Lap. V. = 5\r

Fig. 113. » » *Hister inaequalis*. V. = 2\r

Fig. 114. » » *Necrophorus grandis* F. V. = 1\r

Fig. 115. » » *Scaphidium quadriraculatum*. V. = 5\r

Fig. 116. » » *Cychramus quadripunctatus*. V. = 4\r

Erklärung zu Tafel XIX.

Fig. 117. Hinterflügel von *Alindria spectabilis*. V. = 21/2.
Fig. 118. » » *Antherophagus nigricornis*. V. = 71/2.
Fig. 119. » » *Cucujus imperialis* Lew. V. = 21/2.
Fig. 120. » » *Byturus tomentosus*. V. = 71/2.
Fig. 121. » » *Passalus interruptus*. V. = 11/2.
Fig. 122. » » *Syntelia histeroides* Lew. V. = 5.
Fig. 123. » » *Lucanus cervus*. V. = 11/2.
Fig. 124. » » *Julodis laevicostata*. V. = 21/2.
Fig. 125. » » *Emenadia flabellata*. V. = 51/2.
Fig. 126. » » *Rhipicera marginata* L. V. = 21/2.
Fig. 127. » » *Ancylocheira rustica*. V. = 43/4.
Fig. 128. Flügel von *Helodes pallida* V. = 71/2.
Fig. 129. » » *Byrrhus pillula*. V. = 41/2.
Fig. 130. » » *Apate capucina*. V. = 41/2.
Fig. 131. » » *Trichodes apiarius*. V. = 4.
Fig. 132. » » *Dermestes lardarius*. V. = 71/2.
Fig. 133. » » *Tetratoma fungorum*. V. = 51/2.
Fig. 134. » » *Epicauta* sp. V. = 21/2.
Fig. 135. » » *Mordella decemguttata*. V. = 41/2.
Fig. 136. » » *Oedema podagrariae*. V. = 6.
Fig. 137. » » *Eutachelus Temminki*. V. = 11/2.
Fig. 138. » » *Attelabus curculionides*. V. = 71/2.
Erklärung zu Tafel XX.

Fig. 139. Flügel von *Caryoborus bactris*. V. = 2⅓.
Fig. 140. » » *Anthribus albinus*. V. = 4⅓.
Fig. 141. » » *Clytus arcuatus*. V. = 4⅓.
Fig. 142. » » *Trichenotoma Childreni*. V. = 2.
Fig. 143. » » *Motorchus Panzeri*. V. = 2.
Fig. 144. » » *Oreina gloriosa*. V. = 3.
Fig. 145. » » *Sagra femorata*. V. = 2.
Fig. 146. » » *Eumolphus cupreus*. V. = 2.
Fig. 147. » » *Aplosoma albicorns*. V. = 3⅓.
Fig. 148. » » *Polychalca variolosa*. V. = 3⅓.
Fig. 149. » » *Coccinella septempunctata*. V. = 6⅓.
Fig. 150. » » *Nilio spec.* V. = 4⅓.
Fig. 151. » » *Endomychus spec.* V. = 5⅓.
Fig. 152. » » *Cynips rosae*. V. = 7⅓.
Fig. 153. » » *Helorus anomalipes* Pz.
Fig. 154. » » *Lyda hypotrophica* Hart. V. = 5⅓.
Fig. 155. Vorderflügel von *Gasteruption assectator* F. V. = 7⅓.
Fig. 156. » » *Aulacus* sp. (Brasilien). V. = 7⅓.
Fig. 157. Flügel von *Formica fuliginosa* Latr. V. = 6.
Fig. 158. » » *Xylocopa violacea*. V. = 2⅓.
Fig. 159. Vorderflügel von *Ammophila dives* Brull. V. = 4⅓.
Fig. 160. Flügel von *Stilbum splendidum* F. V. = 5⅓.