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Abstract

Two methods to predict the abundance of the mayfliesBaetis rhodaniandBaetis vernus(Insecta, Ephemeroptera)
in the Breitenbach (Central Germany), based on a long-term data set of species and environmental variables
were compared. Statistic methods and canonical correspondence analysis (CCA) attributed abundance of emerged
insects to a specific discharge pattern during their larval development. However, prediction (specimens per year) is
limited to magnitudes of thousands of specimens (which is outside 25% of the mean). The application of artificial
neural networks (ANN) with various methods of variable pre-selection increased the precision of the prediction.
Although more than one appropriate pre-processing method or artificial neural networks was found,R2 for the best
abundance prediction was 0.62 forB. rhodaniand 0.71 forB. vernus.

Introduction

Biodiversity, species richness, density or biomass of
populations are results of a multitude of environmental
variables. The dependence of a species or a com-
munity on its habitat is a crucial hypothesis in ecology.
Thus, the forecast of abundance or biomass of species
or populations, or even the community structure based
on habitat characteristics is an interesting task in basic
and applied ecology (Baran et al., 1996; Chon, 1996;
Chon et al., 1996, Cisneros Mata et al., 1996; White-
head et al., 1997). Such studies are of high interest in
particular for managers of fish and wildlife, and for en-
gineers dealing with stream and river channels (Giske
et al., 1998; Guegan et al., 1998; Lek & Baran, 1997;
Lek et al., 1996a; Mastorillo et al., 1997a; Mastorillo
et al., 1997b).

During the past decades human-caused effects
have altered the interactions between running waters
and their environment, with implications on major
portions of the community. A proper evaluation of
human impact on ecosystems, however, depends on
the availability of data from undisturbed reference
areas. Intact systems need not only to be character-
ised in terms of average species abundance or the

mean of selected environmental factors, but also in
natural variability and its effects on populations and
communities. This requires the availability of long-
term data sets to generate models of the magnitude
of the dependence of populations or communities on
environmental variables. The results of such studies
can generate features to characterise the ecological
integrity of ecosystems. Regression and correlation
models have repeatedly been used to explain patterns
of ecosystem attributes and they have provided use-
ful insights on environmental control of ecosystems,
but their predictive power is low (Paruelo & Tomasel,
1997; Ter Braak & Verdonschot, 1995; Walley &
Fontama, 1998).

Since 1969, the Limnologische Flußstation Schlitz
(Germany) has collected data on emerging insects at
the Breitenbach and on environmental variables that
are believed to influence species abundance. Using
traditional statistical methods and canonical corres-
pondence analysis (CCA) (Ter Braak, 1988, 1990), the
abundance of adults of individual species was attrib-
uted mainly to discharge patterns during larval devel-
opment (Wagner & Schmidt, in press); this indicates
that if the discharge pattern is known, at least the mag-
nitude of a species’ abundance (emerging adults) is
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predictable. Due to the necessity to recognise patterns
and not just single events, artificial neuronal networks
(ANN) are believed to be an alternative method to
model species abundance (Colasanti, 1991; Lek et
al., 1996b). The applicability of ANNs to this set of
problems is tested below.

Study site

The Breitenbach is a small perennial stream in Central
Germany, (50◦ 40′ N, 9◦ 45′ E) in an area of Bunter
Sandstone. The stream flows mainly through mead-
ows and has a drainage of approximately 9 km2. The
main spring in the middle course has an elevation of
310 m a.s.l., the stream flows into the Fulda River at
220 m a.s.l., and stream length is 2 km. Monitoring
of insect emergence, water temperature and discharge
was carried out at the ‘classical site’, 660 m below
the spring (Illies, 1971), precipitation was measured
at about 2 km distance from the drainage area, at an
official site.

Material and methods

Species and environmental variables

Aquatic insects have been collected in emergence
traps since 1969 (Illies, 1971). Collecting methods
have changed: until 1986, insects were collected daily
with a vacuum device, but in 1987 the traps were
altered to collect specimens automatically. The may-
flies Baetis vernus(Curtis, 1834) andBaetis rhodani
(Pictet, 1843) are among the most numerous aquatic
insects in the Breitenbach. Larvae of both species are
grazers on stones and avoid sandy substratum (Wag-
ner, 1989).B. rhodani is typically bivoltine, butB.
vernusis univoltine with an egg diapause until winter
(Bohle, 1969; Clifford, 1982; Schmidt, 1984). Mor-
tality during the terrestrial phase of the life cycle was
estimated to be 90–99% (Wernecke & Zwick, 1992).
We compared the accuracy for predicting the abund-
ance (A) of adult B. vernusand B. rhodani in the
Breitenbach at one monitoring site with two methods
described below. Water temperature (T) and discharge
(D) were measured at the Breitenbach, and precip-
itation (P) was measured at a station close to the
catchment. Monthly maxima of water temperature and
discharge, and the monthly amount of precipitation,
were used as predictors in the models.

Statistical methods

Correlation, regression (SPSS, 1997), and ordina-
tion (Ter Braak, 1988, 1990) are traditional meth-
ods to relate environmental variables with species
abundance. They calculate abundance difference and
provide methods to test significance. However, they
involve data reduction to a smaller number of vectors
or site points, with a loss of information.

As an alternative, artificial neural networks (ANN)
use all available data of precipitation (P), discharge
(D), water temperature (T), and abundance (A) of the
12 preceding months to predict species abundance in
the target month (12 in Table 1).

ANNs consist of interconnected layers of simple
processing elements called neurons. In feed forward
networks — the most common type of ANNs — an
input vector provided at the first layer (the input layer)
is propagated step by step through all layers, resulting
in an output vector at the last layer (output layer). If the
neurons use a non-linear function to map their input
(a weighted sum of all outputs from neurons in the
previous layer) the network as a whole represents a
non-linear function. The more neurons an ANN has,
the more capable and complex the networks and its
function becomes.

One of the most useful features of ANNs is the
ability to learn relationships from examples, i.e., to
adapt their weighted connections so that the network
represents a model fitting the training data (usually a
set of pairs of input vectors and corresponding target
outputs). The rules for the adaptation process are put
together in the learning algorithm. Given represent-
ative examples during training, ANNs also have the
ability to generalise, i.e., provide sensible outputs for
new (untrained) input vectors. The available data are
split into a set of input/target pairs; these are used
for the training and as a test set solely to check the
generalisation performance of the trained net. This in-
volves applying the input vectors and comparing the
network’s output with the target output. From that, an
overall error valueE is calculated by

E = 1

2PAT

PAT−1∑
p=0

OUT−1∑
i=0

(tarpi − outpi)2,

where PAT is the number of patterns, OUT the number
of output neurons, outpi the value of thei-th out-
put neuron for thep-th pattern, and tarpi the target
value of thei-th output neuron for thep-th pattern.
For the experiments, we also calculated the determina-
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Table 1. Structure of the 52-dimensional variable vectors. Abundance 12 is the target vector
to be predicted by the remaining variable vectors

Variable Index (13 subsequent months)

Abundance 0 1 2 3 4 5 6 7 8 9 10 11 12

Discharge 0 1 2 3 4 5 6 7 8 9 10 11 12

Precipitation 0 1 2 3 4 5 6 7 8 9 10 11 12

Water temperature 0 1 2 3 4 5 6 7 8 9 10 11 12

Table 2. Number (rank on thex-axis in Figures 2, 4, 5, 6, 7) and date (year/month)
of the test data set (7008 = 1970 August)

Date No. Date No. Date No. Date No. Date No.

7008 1 7503 12 7910 23 8405 34 8812 45

7101 2 7508 13 8003 24 8410 35 8905 46

7106 3 7601 14 8008 25 8503 36 8910 47

7111 4 7606 15 8101 26 8508 37 9003 48

7204 5 7611 16 8106 27 8601 38 9008 49

7209 6 7704 17 8111 28 8606 39 9101 50

7302 7 7709 18 8204 29 8611 40 9106 51

7307 8 7802 19 8209 30 8704 41 9111 52

7312 9 7807 20 8302 31 8709 42 9204 53

7405 10 7812 21 8307 32 8802 43 9209 54

7410 11 7905 22 8312 33 8807 44

tion coefficientR2 for all output/target pairs in the test
set. We used senso networks (Dapper, 1997), a simple
but effective variation of feed-forward networks that
implement the well-known back-propagation learning
algorithm (Rumelhart et al., 1986). Senso nets con-
tain an additional layer of weights, each corresponding
to exactly one input neuron. These weights are in-
cluded in the adaptation process (training) and provide
a direct way to measure the relevance of the input vari-
ables in respect to the output variables. In addition,
senso nets use some improvements of the standard
back-propagation algorithm. We also carried out ex-
periments with another kind of ANN called feature
map (Kohonen, 1982).

Every model calculated is termed an experiment.
Original data were scaled sigmoidally, exponentially,
or logarithmically (minimum 0, maximum 1) to op-
timise the accuracy of the models. Furthermore, mod-
elling with the entire database was compared with
methods of a preceding reduction of vector dimensions
by correlation, regression or neural sensitivity analysis
(to reduce computing time). Eighty percent of the data
sets were used in the training session; the remaining

data were used as test data. A key for the year and
months of the test data set is provided in Table 2.

Results

Ordination

The results of ordination (CCA) indicated a strong
dependence of species abundance on the discharge
pattern (Wagner & Schmidt, in press). Abundance
(specimens per 5 m−2 year−1) between patterns was
significantly different (Figure 1). However, predic-
tions can be made only in magnitudes of thousands
of specimens per year.

Artificial neural networks (ANN)

Modelling the abundance ofB. rhodani
(experiment 1)
The precision of the model was relatively high
(R2=0.56) with the original data (April 1969 to
December 1992). Almost all months with any abund-
ance (n > 0) were predicted correctly. However,
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Figure 2. Abundance prediction ofB. rhodani. Model: all input variables, best generalisation (lowest error): 51–10–1–senso net,R2=0.56.
(Model, full line, square; observed data, dotted line, quadrate).

Table 3. Overview of the different ANN models to
predict the abundance ofB. rhodani. Determination
coefficient, minimum and mean generalisation errors of
the models

Senso nets Minimum R2 Mean

All variables 0.0082 0.56 0.0156

Correlation 0.0074 0.62 0.0108

Regression 0.0111 0.40 0.0151

Sensitivity analysis 0.0085 0.55 0.0139

the magnitude of abundance differed between pre-
diction and actual data (Figure 2). Pre-selection of
five variables (abundance0, abundance1, abundance11,
temperature0, temperature5, compare Table 1) with
correlation analysis increased the accuracy of the
model toR2=0.62 (Figures 3 and 4). Cross correlation
indicated almost no influence of precipitation onB.
rhodani abundance, but some influence of temperat-
ure and discharge. The abundance of the grandparent
generation, low discharge and high temperature 12
months before, and high discharge with low tem-
perature 6–8 months before emergence provide suf-
ficient conditions for the success of the population.
Pre-selection by regression analysis found other relev-
ant variables (abundance1, abundance10, abundance11,
discharge6, precipitation9), yet decreased the accur-
acy of the model toR2=0.40. A sensitivity ana-
lysis selected the variables abundance0, abundance11,
discharge9, precipitation9, precipitation10 and had an
accuracy ofR2=0.55 (Figure 5). An overview of these

Table 4. Overview of ANN models ofB. rhodaniabundance
based on discharge measures. Determination coefficient,
minimum, mean and maximum generalisation errors of the
models

Method Minimum R2 Mean Maximum

Max 0.01600 0.11 0.02323 0.03453

Min 0.01853 0.18 0.02171 0.02993

MitMax 0.01423 0.37 0.01487 0.01556

Diff 0.01627 0.28 0.02305 0.03095

Quo 0.02166 0.01 0.02190 0.02256

Minus 0.02117 0.03 0.02649 0.03696

Div 0.02221 0.03 0.02850 0.03955

experiments indicates that the best model was com-
puted with a pre-selection of the ‘best five’ variables
by correlation, and the next best models included all
variables or a pre-selection by sensitivity analysis. A
pre-selection by regression resulted in a low accuracy
of the model (Table 3).

Altering the discharge data (experiment 2)

We also tested the prediction quality of theB.
rhodani model using various measures of discharge
only: maximum monthly discharge (Max), minimum
monthly discharge (Min), the long-term mean pattern
of monthly discharge (MitMax), the deviation of ac-
tual from long-term mean monthly discharge (Diff =
Max minus MitMax), the quotient (Quo = Max by
MitMax), difference of Max and Min (= Minus), and
Div (= Max by Min). The highestR2 of 0.37 was
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Figure 3. Auto- (ACF) and cross-correlation (CCF) ofB. rhodaniand environmental variables.

found with the long-term mean monthly discharge pat-
tern, but the determination coefficient declined with
discharge (Table 4).

Actual discharge or long-term mean discharge
(experiment 3)

In a further experiment the actual discharge data (Max)
of experiment 1 were replaced by the long-term mean
discharge (MitMax of experiment 2) in combination
with P, T andA to predict the abundance ofB. rhodani.
The determination coefficient increased to 0.63 for the

model with all variables, but decreased to 0.57 for the
correlation model.

Altering the scaling options (experiment 4)

The scaling options of the original data may con-
tribute to variation of a model’s precision. Thus, in
experiment 4 the data were scaled logarithmically, ex-
ponentially, or sigmoidally. Variable pre-selection by
correlation showed the best generalisation, although,
after re-scaling the determination coefficient of the
models decreased to 0.40–0.42 (Table 5).
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Figure 4. Abundance prediction ofB. rhodani. Model: pre-selection by correlation, best generalisation (lowest error): 5–3–1–senso net,
R2=0.56. (Model, full line, square; observed data, dotted line, quadrate).

Figure 5. Abundance prediction ofB. rhodani. Model: pre-selection by sensitivity analysis, best generalisation (lowest error) 5–3–1–senso net:
R2=0.55. (Model, full line, square; observed data, dotted line, quadrate).

Table 5. Overview of the ANN models with logarithmically scaled
data. Minimum and mean generalisation errors of the models, and
determination coefficient of the scaled and re-scaled data

Senso nets Minimum R2 Mean R2 (re-scaled)

All variables 0.015 0.63 0.0164 0.40

Correlation 0.013 0.68 0.0147 0.42

Regression 0.016 0.59 0.0173 0.42

Deviation of the actual data from the long-term mean
(experiment 5)

We also tested the influence of the differences of the
actual abundance and discharge values from the long-
term mean. The model was not significant (R2=0.01)
with actual discharge and abundance, but with actual

Table 6. Overview of ANN models ofB. vernusabundance based
on various pre-selection methods. Determination coefficient, min-
imum and mean generalisation errors of the models

Senso nets Minimum R2 Mean

All variables 0.0057 0.54 0.0110

Correlation 0.0060 0.45 0.0087

Regression 0.0054 0.63 0.0077

Sensitivity analysis 0.0036 0.71 0.0064

discharge and abundance of the parent generation the
R2 increased to 0.44.

Modelling the abundance ofB. vernus(experiment 6)
The same models used forB. rhodani were ap-
plied to predict the abundance ofB. vernus. A
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Figure 6. Abundance prediction ofB. vernus. Model: pre-selection by sensitivity analysis, best generalisation (lowest error) 5–3–1–senso net:
R2=0.71. (Model, full line, square; observed data, dotted line, quadrate).

neural sensitivity analysis that selected the variables
abundance0, abundance10, abundance11, discharge0,
and precipitation0 provided the best solution. The best
model (5–3–1–senso net) had an accuracy ofR2=0.71
(Figure 6). The determination coefficient of other
methods was lower, and lowest with pre-selection by
correlation. An overview of the coefficient of other
models forB. vernusis provided in Table 6.

Using only the months of larval development
(experiment 7)
It was interesting to test whether the precision of the
model increased if only months relevant for larval de-
velopment (i.e., excluding the period of egg diapause
until January) were used with theB. vernusdata. We
used previous abundance, discharge, precipitation and
temperature data from six consecutive months to fore-
cast the abundance in the last month by a 23–5–1
network. The resulting coefficient of this model was
lower (R2=0.60) compared with the regression model
or the sensitivity analysis, but higher compared with a
model that used all variables for an entire year.

Discussion and conclusion

The abundance differences ofB. rhodaniandB. ver-
nus among years were related to discharge patterns
using CCA and traditional statistics. However, only
two classes with high and two classes with low abund-
ance were discriminated forB. rhodani, whereas three
classes of low and one class of high abundance were
discriminated forB. vernus. Further discrimination

was senseless because the 50% boxes of mean abund-
ance per pattern widely overlapped (Figure 1). In
combination with species traits, it can be deduced
thatB. rhodanihas high success at permanently high
discharge and at a seasonal discharge pattern (D, E),
but low success at permanent low flow or a non-
seasonal discharge pattern (F, B).B. vernus, on the
other hand, reaches highest abundance values only
at the non-seasonal pattern B. This is an example of
discharge-mediated competitive exclusion because all
probable competitors reach only low abundance levels
as an effect of high discharge, but theB. vernuspop-
ulation remains more or less unaffected because of
diapausing eggs.

ANN models are based on monthly data of spe-
cies and environmental variables. The amount of data
is larger in the original data set and computing is
time consuming. The dimension reduction techniques
provided improved generalisation performance of the
ANNs in many, but not all cases. The selection of
proper pre-processing methods is important for the
success of the neural modelling (Dapper, 1997).

No single pre-processing method to model the
abundance of bothBaetis species was found. Pre-
selection by correlation was optimal inB. rhodani
but was the least sensitive method inB. vernus. B.
vernuswas best modelled by sensitivity pre-selection.
Predictors for the best model of both species were
abundance of the grandparent or parent generation and
temperatures during the emergence and oviposition
period of the grandparents and parents. Thus, abund-
ance predictions can be made quite precisely even
several months before emergence.
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In both species, the manipulation of some or all
data by different scaling options decreased the preci-
sion of the ANN models (comparison ofR2 values is
useful only after re-scaling). A similar phenomenon
was observed in CCA analyses (Wagner & Schmidt,
in press). Several combinations of long-term and ac-
tual data also did not improve the model. Only one
small but negligible improvement was observed in the
B. rhodanimodel, if the actual discharge was replaced
by the long-term mean, but the previously best (correl-
ation) model then decreased in precision. Ecologically,
a probable link of the species’ life cycle with repet-
itive seasonal patterns of the environmental variables
exists and probably it explains the high determination
coefficients of the ANN models.

Based also on the results of more traditional stat-
istical methods, increased experience with ANNs will
help optimise the models to predict the abundance
of aquatic insects. These methods can be further de-
veloped as a tool for better understanding the interrela-
tions of environmental variables impacting individual
species and the entire community of streams. The
forecast of environmental effects on habitats, species,
populations and communities is crucial in basic as well
as in applied science.
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