Is all salinity the same? I. The effect of ionic compositions on the salinity tolerance of five species of freshwater invertebrates

Liliana ZalizniakA, Ben J. KeffordA,B and Dayanthi NugegodaA

ABiotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora 3083, VIC, Australia.
BCorresponding author. Email: ben.kefford@rmit.edu.au

Abstract. Salts of marine origin, predominantly consisting of Na+ and Cl− ions, are dominant in most Australian inland saline waters. The proportions of other ions, Ca2+, Mg2+, SO\textsubscript{4}2−, HCO\textsubscript{3}− and CO\textsubscript{3}2−, in the water may influence salinity tolerance of freshwater organisms and thus the effect of increasing salinity may vary with difference in ionic proportions. We exposed freshwater invertebrates to different concentrations of four ionic compositions and compared them with commercial sea salt (Ocean Nature). They were: synthetic Ocean Nature (ONS) and three saline water types (ONS but without: SO\textsubscript{4}2−, HCO\textsubscript{3}− and CO\textsubscript{3}2− (S1); Ca2+, HCO\textsubscript{3}− and CO\textsubscript{3}2− (S2); and Ca2+ and Mg2+ (S3)), which are considered to be the predominant saline water types in south-eastern Australia and the Western Australian wheatbelt. The 96-h LC\textsubscript{50} values for the five media were determined for six invertebrate species and sub-lethal responses were observed for two species. There were no differences between responses of invertebrates to various ionic compositions in acute toxicity tests. However, in prolonged sub-lethal tests, animals reacted differently to the various ionic compositions. The greatest effect was observed in water types lacking Ca, for which plausible physiological mechanisms exist. Variation in ionic proportions should be taken into account when considering sub-lethal effects of salinity on freshwater invertebrates.

Introduction

The salinisation of fresh waters is a major environmental concern in all continents with large arid and semi-arid regions, including Australia (Williams 1987). Recently, attention has been given to the lethal (Berezina 2003; Kefford et al. 2003) and sub-lethal tolerance (Kefford and Nugegoda 2005) of freshwater invertebrates to increased salinity, whereas other studies have experimentally considered effects of salinity on freshwater invertebrate communities (Nielsen et al. 2003; Marshall and Bailey 2004). All of these studies used artificial sea salts, the ionic proportion of which approximates seawater, because it is the most common composition of saline water bodies in south-eastern Australia (Bayly and Williams 1973), which are sodium chloride (NaCl) dominated. However recently it has been acknowledged that there is some variation in the ionic proportion of NaCl-dominated inland saline waters of south-eastern Australia (Radke et al. 2002, 2003). The three major saline water types existing in south-eastern Australia (Radke et al. 2002) and the wheatbelt region of Western Australia (Pinder et al. 2005) were proposed by Drever (1982) and occur due to precipitation out of solution of specific minerals during evapoconcentration of saline waters and result in reductions in the relative concentrations of specific ions. If variations in ionic proportions in NaCl-dominated inland saline waters result in differing biological effects, then studies investigating the effects of saline water with particular ionic proportions (such as seawater) may not accurately describe the effects of changes in salinity with differing ionic proportions. Consequently, we investigated whether these three common ionic proportions and artificial seawater altered lethal and sub-lethal effects of salinity on freshwater invertebrates. For the common ionic proportions, we used the most extreme cases, where specific ions are eliminated from a saline water source, and therefore refer to the ionic compositions (presence/absence of specific ions), because if the absence of specific ions do not affect salinity tolerance then it is very unlikely that a reduction in the proportions of these ions would affect salinity tolerance.

Materials and methods

Test animals

Six species of freshwater invertebrates were used for acute 96-h LC\textsubscript{50} toxicity testing (LC\textsubscript{50} is the concentration of a toxicant lethal to 50% of a population). The protozoan Paramecium caudatum Ehrenberg and hydrozoan Hydra oligactis Pallas were purchased from Southern Biological (Melbourne, Australia). Other species, collected from central Victoria, in the southern end of the Murray–Darling Basin, were: gastropod Physa acuta Draparnaud (Campaspe River, at the Kyneton–Heathcote Rd (37°23′S, 144°31′E)), caddisfly Notalina fulva Kimmins, water bug Micronecta robusta Hale and mayfly Centropilum sp. (King Parrot Creek, a tributary of the Goulburn River, at Flowerdale (37°23′S, 145°16′E)). These specific species were chosen because they represent a...
A wide range of different taxonomic groups found in fresh waters and were obtainable in sufficient numbers to experimentally expose to varying salinity and ionic composition treatments. Previous experiments where macroinvertebrate species have been collected from different sites or from the same site on different dates have shown no detectable difference in acute lethal salinity tolerance (Kefford et al. 2003, 2005a, B. J. Kefford, D. Nugegoda, L. Metzeling and E. Fields, unpublished data). This is despite large differences in the acute lethal salinity tolerance between species. We thus assume that any difference in salinity tolerance or response to the different ionic compositions of species obtained from different sources represents differences between the species tested rather than differing responses of animals collected from different sites.

Water quality data from collection sites are given in Table 1 of an Accessory Publication on the Marine and Freshwater Research website.

Three species, *P. acuta*, *P. caudatum* and *H. oligactis*, were used in chronic toxicity tests. The results for *P. acuta* will be presented elsewhere (L. Zalizniak, B. J. Kefford and D. Nugegoda, unpublished data). For hydras and paramecia, the culture growth in different types of treatments was determined as the measure of sub-lethal toxicity and EC50 values were calculated (EC50 being the concentration of a toxicant that produced the effect in 50% of population). For *H. oligactis*, another sub-lethal end point (tentacle retraction) was used.

Preparation of solutions

Five different solutions were tested. Concentrated stock solution of around 40 mS cm\(^{-1}\) of Ocean Nature artificial sea salt (ON) (Aquasonic, Wauchope, NSW) was prepared in Milli-Q water (Millipore, Sydney) and used in preparation of dilutions. Based on both the manufacturers’ claimed elemental composition and elemental analysis (inductively coupled plasma mass spectrometry) of Ocean Nature, ‘Ocean Nature Synthesised’ (ONS) was prepared from analytical-grade reagents. Major ions and trace elements were considered (22 total), and their quantities were calculated (see Table 2 of Accessory Publication on the Marine and Freshwater Research website). Ocean Nature was used as a standard to compare with previous investigations using this salt (Kefford et al. 2003, 2004a, 2004b, 2005a, Kefford and Nugegoda 2005), and ONS was used as control for possible effects of various synthesised ionic compositions. Based on ONS preparation, three different ionic compositions were derived to reproduce the three major saline water types described in Radke et al. (2002): S1 had the same ionic composition as ONS except there were no sulphates (SO\(_4^2-\)) or carbonates (HCO\(_3^-\) and CO\(_3^-\)), referred to as alkalinity (Alk); S2 was without calcium (Ca\(^{2+}\)) and Alk; and S3 excluded Ca\(^{2+}\) and magnesium (Mg\(^{2+}\)) (Fig. 1; also see Table 2 of Accessory Publication on the Marine and Freshwater Research website). Natural S1, S2 and S3 waters have some levels of the elements (see Radke et al. 2002) that we excluded. We excluded them in the stock solutions to represent a worst-case scenario. The control and dilution water had enough of these excluded ions to allow high (>85%) survival. Where possible, we tried to use carbon-filtered Melbourne tap water (WLW) as our dilution water and control. However, laboratory cultures required specific media for their maintenance. For paramecia, we used Lozina-Lozinsky medium (Lozina-Lozinsky 1931) and for hydras – M4 medium (Elendt and Bias 1990). Though M4 medium was designed for daphnids, prolonged culturing of hydras (over several months) using this medium was successful. These media served as culture media, dilution water and control in corresponding experiments. The analysis of major ions for some of these media is presented in Table 3 of the Accessory Publication on the Marine and Freshwater Research website.

Animal cultures

Brown hydras, *H. oligactis*, were fed daily with brine shrimps or juvenile *Daphnia carinata* (whichever available, since previous observations showed that the cultures survive equally well with either) *ad libitum*. Medium was replaced three times a week.

![Fig. 1. Measured ionic proportions of the various saline water types, media (M4) and carbon-filtered Melbourne tap water (WLW): (a) cations and (b) anions as a percentage of the total major cations/anions on a mass to volume basis. (For raw data, see Accessory Publication on Marine and Freshwater Research website.)](image-url)

For paramecia *P. caudatum* culturing technique was per Sazonova et al. (1997). Lozina-Lozinsky medium was boiled with 0.4 g L\(^{-1}\) of dry yeasts and cooled, and then inoculate of culture was introduced. After two days of acclimatising, animals were used for the experiment. Medium was replaced weekly or as necessary.

Animals collected from the field were transported from the site to the laboratory and transferred to the testing solutions as quickly as possible (as per Kefford et al. 2003, 2004a, 2005a).

Acute toxicity testing experimental protocols

There was no water replacement or feeding.

Hydras

The protocol published by Pollino and Holdway (1999) was used and is only briefly described. Non-budding hydras were used. To achieve this, hydras were not fed for 1–2 days. Five concentrations of each salt type were used: 4, 6, 8, 10 and 12 mS cm\(^{-1}\) replicated 4 times in Petri dishes (Ø 54 mm), with five animals per replicate and 15 mL of test solution. Observations were made daily for 96 h; deaths and tentacle retraction of hydras were recorded. For the tentacle retraction, only two rankings were used: ‘unaffected’ being normal, and ‘affected’, which is any degree of shortening or disintegration (Pollino and Holdway 1999).
It is not certain in the tulip stage if animals are truly dead; consequently, at the end of experiment, tulip stage animals were transferred to control solution for 48 h. If animals recovered from the tulip stage, they were counted as alive.

Paramecia

Five concentrations of each salt type were used: 2, 4, 6, 8, and 10 mS cm\(^{-1}\) each with 10 animals per concentration held individually in 2-mL wells. Paramecia were fed with the suspension of yeasts (10 g L\(^{-1}\)) in Lozina-Lozinsky medium every second day (0.02 mL per well). Mortality and numbers present were recorded and LC\(_{50}\) was determined after 24, 48 and 96 h of exposure.

Insects

The rapid toxicity testing method was used (Kefford \textit{et al.} 2003, 2005a, 2005b). There were 10 animals of each species per treatment of 3 L of water. Exposure concentrations were: for \textit{Centropitulum} sp.: WLW (electrical conductivity (EC) = 0.13 ± 0.01 mS cm\(^{-1}\)), 5, 10, 15 and 20 mS cm\(^{-1}\), and for other species: WLW, 10, 15, 20, 25 and 30 mS cm\(^{-1}\). Observations were made daily for 96 h.

Sub-lethal toxicity testing experimental protocols

Hydras

Experimental procedure was as per acute test (Pollino and Holdway 1999) and is only briefly described. However, budding hydras were used. To achieve this, hydras were fed in excess for 4–6 days. Three concentrations of each salt type were used: 1, 2 and 4 mS cm\(^{-1}\). After counting animals and observing tentacle retraction, animals were fed in excess with brine shrimps (0.2 mL per dish). After 1 h all solutions were changed. All parameters for each day were calculated as the geometrical mean between the new and old medium.

The mean relative growth rate of hydras for each treatment concentration was calculated as follows (Pollino and Holdway 1999):

\[K = \frac{(\ln N_t - \ln N_{t-1})}{\Delta t} \]

where \(N_t\) is the number of animals at time \(t\), \(N_{t-1}\) the number of animals at time of previous observation and \(\Delta t\) time between two observations.

Paramecia

The experimental protocol is as per acute toxicity testing with paramecia. The culture growth rate (for individual animals) was calculated using a standard formula:

\[\mu = \ln N / T \]

where \(N\) is number of animals in the well at time \(T\) and \(T\) is time from the start of the experiment (days).

Statistics

For each species and treatment type, Probit regression models (see Agresti 1990) were fitted with the x-variable being EC and the y-variable the response variable (survival, population growth or tentacle contraction). From these regressions, LC\(_{50}\) and EC\(_{50}\) values and their 95% confidence intervals were calculated for each treatment type. \textit{Post hoc} comparison of EC\(_{50}\) values was performed using a paired \(t\)-test assuming unequal variances.

Results

Acute tests

For all species examined there were no statistically significant differences in their 96-h LC\(_{50}\) values for the different treatments (Table 1). The results for \textit{Centropitulum} sp. (Table 1) are, however, somewhat inconclusive. For treatments other than ON over 96 h of exposure, they had partial but <50% mortality at the lowest salinity treatment (5 mS cm\(^{-1}\)), consequently their 96-h LC\(_{50}\) value is below 5 mS cm\(^{-1}\) for all types of treatments except ON. Since concentrations below 5 mS cm\(^{-1}\) were not tested in this experiment, the error in LC\(_{50}\) calculation is higher than for the other species and thus there is a greater probability of a type 2 error. Across the three species, however, there would appear to be no detectable effect of the different saline water types on acute survival of freshwater invertebrates tested.

Sub-lethal tests

Though there are differences in tentacle retraction of hydras at 24 h, they were eliminated at 72 h (Fig. 2). The EC\(_{50}\) for the S3 salt type initially increased then later decreased. Thus, the hydras appear to adapt to their environment when the initial shock is reduced, and they can return to their ‘normal’ condition. Interestingly 24- and 48-h EC\(_{50}\) for S1 seemed higher (though not statistically significant) than all the others. It may be that sulphates are more toxic to hydras than chlorides and eliminating them results in a marginally reduced overall toxicity.

Hydra culture growth was partially affected by the variation in ionic compositions (Fig. 3). The 96-h EC\(_{50}\) value for the S2 treatment was significantly lower than for the ONS and S3 types of treatments.

The population growth of the paramecia was significantly reduced (Fig. 4) when calcium was eliminated from the media (S2 and S3 types).

Discussion

General observations

There were no significant differences in toxicity between ON, ONS and S1 (no sulphates and alkalinity) treatments in any of the experiments. Although this was expected with ON and ONS, it also indicated that removal of SO\(_4^{2-}\) and Alk did not change the toxicity of salinity in any detectable way. The proportion of these anions is around 13% of the total anion load in ONS, the rest being mostly Cl\(^-\). When S1 and S2 treatments were prepared, these anions were replaced with Cl\(^-\), thus increasing its load. Kefford \textit{et al.} (2004a) observed that ON was less toxic to freshwater invertebrates than pure NaCl. The lack of a difference in toxicity between ON, ONS and S1 may indicate that the difference in toxicity between ON and NaCl is not because of Cl\(^-\) toxicity, but rather lack or difficulty in extraction at high salinity of essential and trace elements, such as calcium, potassium, copper, selenium etc. The 24- and 48-h EC\(_{50}\) (tentacle retraction) for hydras in S1 were slightly higher than in other treatments. We did not specifically test toxicity of Cl\(^-\) against SO\(_4^{2-}\), but other studies with a range of freshwater invertebrate taxa indicate that...
Table 1. The LC₅₀ values for animal species tested in acute 96-h experiments

<table>
<thead>
<tr>
<th>Species</th>
<th>Type of treatment</th>
<th>24 h</th>
<th>48 h</th>
<th>72 h</th>
<th>96 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paramecium caudatum</td>
<td>ON</td>
<td>8.70</td>
<td>NM</td>
<td>8.70</td>
<td>8.70</td>
</tr>
<tr>
<td></td>
<td>ONS</td>
<td>8.66</td>
<td>NM</td>
<td>8.66</td>
<td>8.66</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>9.10</td>
<td>NM</td>
<td>8.85</td>
<td>8.85</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>7.24</td>
<td>NM</td>
<td>7.24</td>
<td>7.24</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>7.58</td>
<td>NM</td>
<td>7.38</td>
<td>7.38</td>
</tr>
<tr>
<td>Hydra oligactis</td>
<td>ON</td>
<td>8.95</td>
<td>8.75</td>
<td>8.56</td>
<td>8.37</td>
</tr>
<tr>
<td></td>
<td>ONS</td>
<td>9.08</td>
<td>8.79</td>
<td>8.61</td>
<td>8.35</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>9.09</td>
<td>9.09</td>
<td>8.90</td>
<td>8.81</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>9.12</td>
<td>8.86</td>
<td>8.86</td>
<td>8.53</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>9.10</td>
<td>8.85</td>
<td>8.85</td>
<td>8.33</td>
</tr>
<tr>
<td>Notalina fulva</td>
<td>ON, NC</td>
<td>30.55</td>
<td>22.96</td>
<td>18.46</td>
<td>15.06</td>
</tr>
<tr>
<td></td>
<td>ONS</td>
<td>33.03</td>
<td>28.17</td>
<td>19.58</td>
<td>15.69</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>32.83</td>
<td>22.55</td>
<td>18.64</td>
<td>14.57</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>60.18</td>
<td>29.51</td>
<td>24.21</td>
<td>16.46</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>97.46</td>
<td>23.66</td>
<td>18.27</td>
<td>11.22</td>
</tr>
<tr>
<td>Micronecta robusta</td>
<td>ON</td>
<td>21.44</td>
<td>19.08</td>
<td>14.51</td>
<td>10.51</td>
</tr>
<tr>
<td></td>
<td>ONS</td>
<td>25.15</td>
<td>21.45</td>
<td>18.7</td>
<td>12.11</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>29.71</td>
<td>23.67</td>
<td>17.9</td>
<td>11.22</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>27.61</td>
<td>23.76</td>
<td>18.02</td>
<td>11.22</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>24.15</td>
<td>19.01</td>
<td>14.11</td>
<td>9.58</td>
</tr>
<tr>
<td>Centroptilum sp.</td>
<td>ON</td>
<td>14.94</td>
<td>9.25</td>
<td>6.33</td>
<td>4.63</td>
</tr>
<tr>
<td></td>
<td>ONS</td>
<td>13.61</td>
<td>6.33</td>
<td>4.63</td>
<td>4.63</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>14.37</td>
<td>10.24</td>
<td>6.57</td>
<td>4.63</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>11.32</td>
<td>7.89</td>
<td>5.17</td>
<td>4.63</td>
</tr>
<tr>
<td></td>
<td>S3</td>
<td>10.19</td>
<td>6.38</td>
<td>4.11</td>
<td>4.63</td>
</tr>
</tbody>
</table>

ON, Ocean Nature; ONS, synthetic Ocean Nature; S1, ONS without SO₄²⁻, HCO₃⁻ and CO₃²⁻; S2, ONS without Ca²⁺, HCO₃⁻ and CO₃²⁻; S3, ONS without Ca²⁺ and Mg²⁺; NM, not measured; NC, not calculated (100% survival in all concentrations). For some values, confidence intervals (CI) could not be calculated.

Fig. 2. Values of EC₅₀ (concentration of a toxicant that produced the effect (tentacle retraction) in 50% of the population) for Hydra oligactis in different types of treatment (error bars indicate 95% CI).

Na₂SO₄ is more toxic than NaCl (Goetsch and Palmer 1997; Kefford et al. 2004a; Palmer et al. 2004) and that NaCl is more toxic than ON (Kefford et al. 2004a). It would therefore appear that SO₄²⁻ is more toxic than Cl⁻. The replacing of SO₄²⁻ with Cl⁻ could thus have slightly reduced the overall toxicity to hydras.

The results regarding treatments with calcium deficiencies are discussed in detail below.

Fig. 3. Ninety-six-hour EC₅₀ values (concentration of a toxicant that produced the effect (culture growth) in 50% of the population) for Hydra oligactis in different types of treatment (mean ± s.e., n = 4). Different letters represent significantly different results.
Acute tests

Short-term acute toxicity testing is usually conducted in sub-optimal conditions for animals tested: static water regime and no food supply. Though these tests convey very useful information on the range of tolerance of the animals to a particular toxicant (which can be very useful in modelling and management on a wider scale), they give very little information on the mechanisms of action or the effects of a toxicant on organisms subject to long exposures and low sub-lethal concentrations. These experiments are therefore usually regarded as a starting point for more detailed long-term sub-lethal exposures. Though both species were clearly affected by the different ionic compositions in our sub-lethal experiments, calcium deficiencies might play a major part in paramecia swimming behaviour, thus making paramecia swim backward (Preston and Hammond 1998). This results in avoidance behaviour, making paramecia swim forward if Ca\(^{2+}\) concentration is below 10\(^{-6}\) M (40 \(\mu\)g L\(^{-1}\)) and backward if it is higher than 10\(^{-6}\) M. This suggests that, although directional swimming is governed by the intracellular Ca\(^{2+}\) concentration, a minimum amount of calcium in medium is required to maintain normal responses to stimuli. Slightly proportionally higher concentrations of trace metals in S2 and S3 (especially at higher salinities) might have affected animals, but lack of calcium in these media did not allow them to respond adequately. In the case of acute toxicity (Table 1), the differences between various ionic composition types were not evident possibly because the short-term effect of higher salinity per se was greater than the effect of ionic composition of media, making the osmoregulatory mechanism primarily responsible for mortality. At lower salinities in sub-lethal exposures, calcium deficiencies might play a greater part in paramecia swimming behaviour, thus making animals in Ca\(^{2+}\)-lacking media more prone to abnormal behaviour, and consequently expending more energy. In addition, morphogenesis of the complex cell surface during mitosis involves transcellular wave signal, which involves cortical alveoli that act as calcium reservoir in the cell (Laurent and Fleury 1995). Presumably, if there were not enough calcium to initiate the signal, mitosis would be abnormal.

Effect on hydrid

External Ca\(^{2+}\) ions play a major role in the nematocyst discharge in hydrozoans (Yanagita 1973; McKay and Anderson 1988; Salleo et al. 1994a, 1994b; cited in Kawai et al. 1999). Santoro and Salleo (1991) observed that nematocytes do not effects can reveal the differences. However, salinity produced from pure salts (e.g. NaCl, Na\(_2\)SO\(_4\)) and 1 : 1 ratio of pure salts, neither of which occur in nature, do have differing toxicity to that of mixtures of salts (Mount et al. 1997; Kefford et al. 2004a; Palmer et al. 2004).

Sub-lethal tests

There could be several explanations regarding the chronic sub-lethal effects of varying ionic compositions.

1. Direct effect of deficiency of the essential element calcium.
2. Indirect effect of hardness cations (Ca\(^{2+}\), Mg\(^{2+}\)) and carbonates on the biochemistry of the trace metals.

Direct effects of deficiencies in calcium

Effects on paramecia

Paramecia have around 5000 cilia. Movement of the cilia is controlled by their membrane potential. Stimulation of cilia (chemically or physically) activates a voltage-sensitive Ca\(^{2+}\) current associated with the ciliary membrane (Preston and Hammond 1998). This results in avoidance behaviour, making paramecia swim backward (Preston et al. 1992). Nakaoka and Ooi (1985) found that in the presence of adenosine triphosphate as a stimulus in the medium, paramecia swim forward if Ca\(^{2+}\) concentration is below 10\(^{-6}\) M and backward if it is higher than 10\(^{-6}\) M.

Fig. 4. Ninety-six-hour EC\(_{50}\) values (concentration of a toxicant that produced the effect (culture growth) in 50% of the population) for *Paramecium caudatum* in different types of treatment (mean ± s.e., \(n = 10\)). Different letters represent significantly different results.
discharge in Ca$^{2+}$-free medium, and that La$^{3+}$, Cd$^{2+}$ and Co$^{2+}$ prevented discharge by blocking the Ca$^{2+}$ channel even when some Ca$^{2+}$ was present. Gitter et al. (1994) found that discharge of the stenoteles (a type of nematocyst) in Hydra vulgaris is regulated by a mechanism that allows intake of Ca$^{2+}$ from ambient solution. This may explain why hydras were not affected in the acute toxicity test (involving no feeding and therefore no nematocysts discharge) (Table 1), but were growing slower in the sub-lethal test (where nematocysts were discharged to capture their prey) in the S2 treatment compared with the ONS control (Fig. 3). As there was some Ca$^{2+}$ present in the M4 medium, which was used as control and dilution water for the range of salinities prepared, at higher salinities the effect of blocking Ca$^{2+}$ by increasing concentrations of Co$^{2+}$ and Ni$^{2+}$ (see Table 2 in Accessory Publication on the *Marine and Freshwater Research* website) may have begun to play a role. Kawai et al. (1999) reported that Mg$^{2+}$ also had an inhibitory effect on atrichous isorhiza (a type of nematocyst) discharge, and that the inhibitory effect of Mg$^{2+}$ increased when the external concentration of Ca$^{2+}$ was lowered. This might explain why the S2 type affected sub-lethal salinity tolerance in hydras. S3 type medium, though lacking Ca$^{2+}$, may not affect hydras as much as the S2 type (Fig. 3) because it also lacked a powerful Ca$^{2+}$ blocker i.e. Mg$^{2+}$.

Freshwater hydras reproduce by means of forming buds and developing a foot at the base of a bud and then detaching from the parent. A separated bud was counted as a new animal and developing a foot at the base of a bud and then detaching (Alsop and Wood 1999) and salmon. The same applies to uptake of zinc by rainbow trout (Pagenkopf 1983) and cladocerans *Daphnia magna* (Schamphelaere and Janssen 2002) as a result of competition between the hardness metals (Ca, Mg) and trace-metal species for interaction sites. Welsh et al. (2000) also showed that acute copper toxicity was lower in waters containing proportionately more calcium. They also indicated that calcium is more important than magnesium in modifying the toxicity of copper in rainbow trout and chinook salmon. The same applies to uptake of zinc by rainbow trout (Alsop and Wood 1999) and *D. magna* (Heijerick et al. 2002), cadmium by *D. magna* (Penttinen et al. 1998) and the amphipod *Hyalella azteca* (Jackson et al. 2000), and manganese by brown trout (Stubblefield et al. 1997) in the presence of competing Ca$^{2+}$ ions. All water types used in our study contained essential and trace metals Fe, Mn, Cu, Zn, Mo, Se, Li, Sr, Br, Rb, Co, V and Ni (see Table 2 in the Accessory Publication on the *Marine and Freshwater Research* website), which, at elevated concentrations, can be toxic to aquatic invertebrates. Though the concentration of each trace element was very low, a combined load might be significant in the absence of calcium. Elimination of calcium and/or magnesium out of the solution can result, first, in the relative increase of concentrations of trace elements, especially at higher salinities, and second, in increased toxicity of these elements because in the absence of calcium and/or magnesium, more sites are available for binding at the organism–water interface. The hypothesis of increased trace metal toxicity in Ca$^{2+}$ lacking media remains to be tested.

Metal toxicity can also be reduced by complexation with carbonate, thus decreasing the activity of free hydrated metal ions (Barata et al. 1998).

Conclusions

Variation in ionic compositions common in saline inland waters of south-eastern Australia did not affect acute lethal salinity tolerance of any species investigated. However, the different ionic compositions affected the sub-lethal responses of the three investigated species. The water types lacking calcium had the most deleterious sub-lethal effects on the animals. The different responses of invertebrates to various ionic composition types in combination with the sub-lethal range of salinity may be governed by deficiencies in calcium, the chemical interaction of hardness cations, alkalinity and trace metal uptake and toxicity.

In assessing the effects of salinity on freshwater invertebrates, the ionic proportions should be considered in salinity exposures that are likely to induce sub-lethal effects.

Acknowledgments

We are grateful for funding from Land and Water Australia (LWA) and the Murray–Darling Basin Commission, under the National Rivers Contaminants Program (LWA Project no. RMI 12), and the Queensland Department of Natural Resources and Mines. We thank Satish Choy, Brendan Edgar, Richard Marchant, Leon Metzeling, Daryl Nielsen, Carolyn Palmer and Phil Papas for their assistance to the project by being members of a steering committee. We also thank Victor Zalizniak for assistance in calculation of ionic proportions of the media.

References

Manuscript received 25 May 2005; revised 10 October 2005; and accepted 3 November 2005.