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EFFECT OF TEMPERATURE ON THE HATCHING TIME
OF EGGS OF THREE RHITHROGENA SPP.
(EPHEMEROPTERA) FROM AUSTRIAN STREAMS
AND AN ENGLISH STREAM AND RIVER

By U. H. HUMPESCH* AnD J. M. ELLIOTT

Biologische Station Lunz, Austria and Freshwater Biological Association, Windermere
Laboratory, Ambleside, Cumbria, England

SUMMARY

(1) Eggs of Rhithrogena semicolorata from the Wilfin Beck and River Lune (England),
R. cf. hybrida from the Seebach (Austria) and R. loyolaea from the Herrnalmbach
(Austria) were kept at constant temperatures in the laboratory. The percentage of eggs
that hatched at each temperature varied from 0 to 269, for R. semicolorata, 1 to 33%, for
R. cf. hybrida and 0 to 48 for R. loyolaea. These variations were related to temperature
in two species; i.e. no hatching below 5 °C and maximum values at 15-8 °C for R.
semicolorata, few eggs hatching above 10 °C and maximum values in the range 1.9-5.2 °C
for R. loyolaea.

(2) Hatching time (days after fertilization for 109, 509, and 909 of the eggs to hatch)
decreased with increasing temperature and the relationship between the two variables
was well described by a power-law within the ranges 5-9-19-9 °C for R. semicolorata,
4.5-20-4 °C for R. cf. hybrida and 1.9-8-4 °C for R. loyolaea. The relationship for
R. loyolaea was also well described by a hyperbola, but both models were not applicable
above 8-4 °C because hatching time in this species then increased with increasing tem-
perature. There were interspecific differences in hatching times for the three species, but
the times for 509, and 909 of eggs hatched were not significantly different for the two
populations of R. semicolorata.

(3) The length of the period over which eggs were hatching was remarkably short;
<9 days for R. semicolorata and R. c¢f. hybrida, c. 35 days for R. loyolaea.

(4) There was good agreement between hatching times estimated from the power-law
equations and those obtained in field experiments with R. semicolorata and R. cf. hybrida.

(5) Quantitative information on the hatching times of twelve species and twenty
populations of Ephemeroptera is briefly summarized and discussed. The various mathe-
matical models used to describe the relationship between temperature and hatching time
in eggs of poikilotherms are briefly reviewed and it is concluded that the general equation
for a hyperbola and power-law is frequently an adequate empirical model.

INTRODUCTION

The species of the genus Rhithrogena are generally widespread and abundant in torrential
streams and rivers. Rhithrogena semicolorata (Curt.) occursin South and Central Europe,
Britain and Denmark, but is not found in the North European region of the Soviet Union
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or in Scandinavia (Sowa 1975a). Rhithrogena loyolaea Navas and R. cf. hybrida Etn. are
Central European species and their larvae are restricted to cold streams. Rhiithrogena
loyolaea occurs in the upper regions of the Carpathians, Alps and Pyrenees, whilst R. cf.
hybrida is found only in the lower regions of the Carpathians and Alps (Pleskot 1951;
Thomas 1970, 1975; Sowa 1975a, b).

The life history of R. semicolorata has been frequently described (summarized by
Macan 1979), but little is known about the life histories of R. loyolaea and R. cf. hybrida
(Sowa 1975b). These descriptions are based on measurements of larvae collected at
appropriate intervals and on the capture of the adults, but nothing is known about the
development of the eggs and the newly-hatched larvae. Recent work in the laboratory on
the development of eggs of species in the following European genera of Ephemeroptera
has shown that the interpretation of life histories from field data has not always been
correct: Baetis (Bohle 1969 ; Elliott 1972; Benech 1972), Ephemerella (Bohle 1972 ; Elliott
1978) and Ecdyonurus (Humpesch 1980).

The aim of the present study was to obtain quantitative information on the hatching of
Rhithrogena spp. by rearing eggs from different localities and different populations in
streams near Lunz (Austria) and Windermere (England). The experiments were chiefly
performed in the laboratory but a small number of field experiments were also attempted
to discover if the laboratory results were applicable to RhAithrogena spp. in the field.

MATERIALS AND METHODS

Oviposition by R. semicolorata in the Wilfin Beck and the River Lune was observed on
several occasions. Swarming for oviposition usually occurs in the late afternoon and
evening. The female flies upstream and descends to the water surface, releasing a few
eggs by dipping the tip of the abdomen at intervals whilst flying over the water. She seems
to prefer sites where the current is fast. After several visits to the water surface, all the
eggs are released and the female usually falls on the water surface. The eggs sink to the
bottom and are dispersed over a wide area.

Laboratory experiments

Eggs of R. semicolorata were obtained from females that were about to oviposit in the
Wilfin Beck, a small stony stream on the west shore of Windermere in the English Lake
District (stream described by Elliott 1973). Twenty females were caught in June and July
1967, and each female was forced to oviposit on a wet glass slide. The eggs stuck to the
slide to form roughly a monolayer of attached eggs. Four slides, each covered by one
egg mass, were placed in transparent plastic tubes closed at each end with nylon sifting
cloth (aperture 75 um), and the four tubes were placed in a constant-temperature tank
(described in detail by Elliott 1978). The water in each tank was stirred and aerated by
compressed air, and maintained within +0-1-0-2 °C of a constant temperature. Oxygen
concentration was always over 859 saturation and the eggs were illuminated by daylight.
The eggs were examined every week and every 3 days when hatching commenced. The
newly-hatched larvae were removed and counted, and when hatching had apparently
ceased, the slides were examined for a further 28 days to ensure that no more eggs
hatched.

Eggs of R. semicolorata from the River Lune near Scoutgreen, England (river described
by Macan 1976), R. cf. hybrida from the Seebach near Kazim, Austria (stream described
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by Humpesch 1979a, b), and R. loyolaea from the Herrnalmbach, Austria (stream des-
cribed by Humpesch 1979a), were fertilized artificially and kept in cooled incubators or
climate cabinets under different constant-temperature conditions and photoperiods (using
artificial light). The experimental techniques are described in detail by Humpesch (1980).
Eggs hatched in nearly all laboratory experiments above 5 °C with R. semicolorata from
Wilfin Beck and River Lune, but in experiments below 5 °C the eggs developed but did
not hatch. For R. ¢f. hybrida from Seebach and R. loyolaea from Herrnalmbach, eggs
hatched only in eleven of twenty-five experiments and thirty-seven of eighty experiments
respectively. The hatching success of eggs of R. loyolaea was very poor at temperatures
above 10 °C. (Details of the months in which the eggs were fertilized, the water tempera-
ture, photoperiod, number of eggs used and percentage that hatched in each experiment,
and the hatching period are given in the appendix table.)

Field experiments

Five glass slides, each covered by one egg mass from a female R. semicolorata, were
placed in small plastic tubes closed at each end with nylon sifting cloth (aperture 75 um).
Each plastic tube was placed in a heavy metal tube that was wedged between large stones
in a swift flowing section of the Wilfin Beck. The eggs were laid and placed in the stream
on the 5 July 1966, and were inspected at weekly intervals. A maximum and minimum
thermometer was placed near the five tubes and was read and reset under water in each
week. Oxygen concentration was measured with a Mackereth (1964) meter and was
always over 85%; saturation.

One experiment was performed with R. ¢f. hybrida in the Seebach (techniques are
described in detail by Humpesch (1980)) and two experiments with R. loyolaea. Although
the eggs of R. loyolaea developed but did not hatch after being incubated for a period of
about 4 months in Seebach and Herrnalmbach, none of the experiments were successful
because the nets were eventually washed away in spates.

RESULTS
Rhithrogena semicolorata and R. cf. hybrida

Laboratory experiments

The number of eggs used at each temperature varied considerably in the range 126-2292
(see appendix table). The percentage of eggs hatching varied considerably with tempera-
ture for R. semicolorata (Fig. 1). An overall range of 16-26%; hatched at 15-8 °C but the
percentage decreased to about 4-119; at 5-9 °C and 12-25%; at 19-8 °C. In experiments
below 5 °C, the eggs developed to stage 11 (for the description of the stages, see Bohle
(1969)), but did not hatch after being incubated for a period of about 13 months. The
percentage of eggs hatching at each temperature ranged from about 1-33% for R. cf.
hybrida, and there was no evidence that temperature was responsible for these variations
in hatching success (see appendix table).

As the methods of analyzing the experimental data are described in detail by Humpesch
(1980), only a brief account is given here. The relationship between the time required
(Y days after oviposition or fertilization) for 109, 509; and 909 of the eggs to hatch and
water temperature (7 °C) over the temperature range of about 4-5-20-4 °C for R. cf.
hybrida and 5-9-19-9 °C for R. semicolorata was found to be curvilinear on an arithmetic
scale and linear on a logarithmic scale (e.g. Fig. 2(a), (b)). Therefore the relationship
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from the variance ratio were highly significant (P < 0-001). The proportion (r2) of the
variance of Y due to the regression of Y on T was always >0-98, and therefore at least
989 of the variability in the time required for hatching was accounted for by variations
in temperature, which was clearly the major factor affecting the time required for hatching
in the laboratory. Therefore the hatching time was apparently unaffected by variations in
the time of the year when fertilization occurred or by variations in photoperiod (see
appendix table).

The values of the constants @ and b from the regression equations for 109, 509, and
909, of eggs hatched differed between the two species (Table 1). For R. semicolorata the
values of a and & for 509 and 90%; of eggs hatched for the Wilfin Beck population were
not significantly different from those obtained for the River Lune population. It was
therefore possible to calculate one regression equation for eggs of R. semicolorata from
the Wilfin Beck and River Lune by using the pooled results for 509, and 909 of eggs
hatched (see Fig. 2(a), (b)). The value of the constant b from the regression equation for
109 of eggs hatched was significantly different between the two populations, and both
regression lines were significantly different from the regression line for pooled data for
109 of eggs hatched. Therefore it was not valid to calculate a pooled regression line for
10%; of eggs hatched.

Estimates were made of the actual number of days required for 109, 50%; and 909 of
the eggs to hatch at 5 °C, 10 °C, 15 °C and 20 °C (Table 2). The period between ovi-
position or fertilization and 109{ eggs hatched varied from about 22 weeks at 5 °C to
about 2 weeks at 20 °C. There was a difference in the hatching time between the two
species and this varied from a markedly high value of about 7 weeks at 5 °C to about
1 week at 15 °C and 20 °C and less than half a week at 10 °C. With increasing tempera-
ture, the decrease in number of days required for 109, 50%; and 909 of the eggs to hatch
was not the same for the two species, e.g. R. ¢f. hybrida starts to hatch earlier than
R. semicolorata at 5 °C, but later at 20 °C.

The length of the hatching period (Y days) for 109, to 909, of eggs hatched was
remarkably short (Table 3) and decreased slightly with increasing temperature. The
relationship between the two variables was described by eqn (1). The F-values from the
variance ratio were only significant for R. semicolorata from the Wilfin Beck and
for the pooled data for R. semicolorata and for R. semicolorata and R. cf. hybrida, whilst
non-significant values (P > 0-05) were obtained for R. semicolorata from the River Lune
and for R. cf. hybrida from the Seebach. The proportion (r2) of the variance of Y due to
the regression of Y on T was between 0-16-0-61. As only 16 to 619 of the variability
in time required for 109, to 90%; of the eggs to hatch was accounted for by variation
in temperature, the latter was not the only factor affecting the length of the hatching
period in the laboratory. The values of the constants @ and b from the regression equations
for 109, to 909 of eggs to hatch were not significantly different (P > 0-05), neither be-
tween the Wilfin Beck and the River Lune population of R. semicolorata, nor between
R. semicolorata and R. cf. hybrida (Table 3). It was therefore possible to calculate one
regression equation for eggs of the two Rhithrogena spp., and conclude that the length of
the hatching period for 109 to 90%; of the eggs to hatch varied from about 8 days at
5 °C to about 4 days at 20 °C.

Field experiments

The number of eggs in each of the five egg-masses of R. semicolorata placed in the
Wilfin Beck varied from 416 to 581, and the mean percentage of eggs that hatched in each
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egg-mass was 27-6 + 14.99. This value is higher than those obtained at 12-1 °C and
15-8 °C in the laboratory experiments (see Fig. 1). One experiment with eggs of R. cf.
hybrida was performed in the Seebach. There was generally good agreement between the
results from the field and laboratory experiments (Table 4) and only a slight disagreement
between the times taken for 909, of the eggs of R. semicolorata to hatch. Therefore the
regression equations calculated from the results of all experiments with the two Rhithro-
gena spp. are probably applicable to the hatching times in the field, and both the number
of days required for 109, 509, and 90%; of eggs to hatch and length of the hatching
period (10-90%; of eggs hatched) can be estimated for all water temperatures from about
4.5-20-4 °C for R. cf. hybrida and 5-9-19-9 °C for R. semicolorata.

Rhithrogena loyolaea

Laboratory experiments

The number of eggs used at each temperature varied considerably in the range 92-2776
(see appendix table). The percentage of eggs that hatched between 1-9 °C and 20-6 °C
ranged from 09 to 48%;. Although there was a wide range of values for each temperature,
there was clearly an inverse relationship between hatching success and increasing tem-
perature up to about 10 °C (see Fig. 1 and the appendix table). As hatching success was
very low at temperatures above 10 °C, the hatching times at these higher temperatures
were not used in the subsequent analyses. The times at which 109, 509 and 909 of the
eggs had hatched were used in all analyses, the one exception being the 909 point at
8-4 °C, because technical reasons dictated an elevation of temperature to about 10 °C after
the experiments had been running for 5 months. As this alteration probably affected the
time at which 909 of the eggs hatched, the value for 909, hatched at 8-4 °C was not taken
into consideration for the regression analyses.

The relationship between the time required (Y days after fertilization) for 10%;, 509
and 909, of the eggs to hatch and water temperature (7 °C) over the range 1.9-8-4 °C
was well described by a power-law (eqn 1). The regressions were a good fit to the data
and F-values from the variance ratio were highly significant (P < 0-001). As the propor-
tion (7?) of the variance of Y due to the regression of Y on T was always >0-75, tem-
perature was once again the major factor affecting the time required for hatching in the
laboratory. Values of the constants @ and b from the regression equations were signifi-
cantly lower (P < 0-05) than those obtained for R. semicolorata and R. cf. hybrida (cf.
values in Table 1). Estimates were made of the actual number of days required for 10%;,
50% and 909 of the eggs to hatch at 5 °C (Table 2). The period between fertilization
and 10% eggs hatched was about 27 weeks which is much longer than the corresponding
periods for R. semicolorata and R. cf. hybrida.

The relationship between hatching time and temperature over the range 1-9-8-4 °C
was also well described by a hyperbola (Fig. 3) and therefore the relationship between the
rate of development (1/Y) and temperature (7 °C) was given by the linear regression
equation:

1/Y = a + bT )

where a and b are constants. Therefore the time taken for development could be expressed
in units of degree-days above a threshold temperature. The reciprocal of the regression
coefficient (b) estimated the total number of degree-days for development to be completed,
and the threshold temperature (¢ °C) was the temperature at which the rate of develop-
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ment was zero (¢ = —a/b). These values of the mean number (with 95%, C.L.) of
degree-days were 3106 (2735-3593) degree-days above —11-3 + 2-1 °C for 109/ hatched,
3538 (2928-4470) degree-days above —12-3 + 2.9 °C for 509 hatched, and 3843 (3058-
5170) degree-days above —12:1 + 4-1°C for 90%; hatched. Threshold temperatures
were slightly different for 109, 50%; and 90% of the eggs hatched, and cannot be re-
regarded as true biological thresholds because they were obtained by extrapolation of the
gression lines. The three regression lines were highly significant (P < 0-01) and the
relationship between hatching time (Y days) and water temperature (T °C) was therefore
given by the hyperbolic equation:

Y=D(T-1) (©)

where D is the total number of degree-days required for hatching. The proportion (r2)
of the variance of Y due to the regression of ¥ on T was 0-73 to 0-89 for the hyperbolic
relationship, compared with 0-75-0-86 for the power-law defined by eqn (1), and therefore
there was little to choose between the two models.

Both models ceased to be applicable at temperatures just above 8-4 °C (Fig. 3), but the
precise end point could not be determined, and at 10-2 °C there was a marked increase in
hatching time (above c. 10 °C the hatching success was very low: see Fig. 1). The effect
of temperature above 8-4 °C was to increase the number of degree-days required for
hatching, e.g. the number of degree-days for 509; hatched was constant at 3538 for the
range 1-9-8-4 °C, but increased to 6300 at 10-2 °C. As there was only one experiment at
10:2 °C, it was not possible to analyse the relationship between hatching time and
temperature at temperatures above 8-4 °C.

The length of the hatching period (Y days between the times at which 109/ and 909 of
the eggs hatched) slightly decreased with increasing temperature. An attempt was made
to fit eqn (1) to the data, but the regression equation was not significant (P > 0.05,
Table 3). As the r? value was only 0-05, temperature was clearly not a major factor
affecting the length of the period over which the eggs hatched. The mean (+95%, C.L.)
length of this period was 35 + 1-14 days (range 20-60 days) for the range 1-9-8-4 °C, and
was therefore much longer than the values obtained for R. semicolorata and R. cf. hybrida
(Table 3).
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DISCUSSION

There is no previous work on hatching times in Rhithrogena spp., apart from a note that
it took 17 days for eggs of R. semitincta (Pictet) (= R. semicolorata) to hatch at about
18 °C (Degrange & Perrier 1957). This value is similar to that obtained for R. semicolorata
in the present study. When hatching commences in R. semicolorata and R. cf. hybrida,
the period over which the eggs hatch is remarkably short at all temperatures with less
than 10 days between the 109 and 909 hatching times (Table 3). Similar short times
have been reported for Baetis rhodani (Elliott 1972) and five species of Ecdyonurus
(Humpesch 1980), but only at temperatures above about 5 °C and 10 °C respectively.
Tiny nymphs of R. semicolorata are often found over several months and this observation
has been interpreted as an indication of a long hatching period (Macan 1957; Hynes
1961). The results of the present study show that this is incorrect and therefore the most
likely explanation is that some nymphs grow very slowly after hatching. The life cycle of
R. semicolorata and R. cf. hybrida takes about 1 year from oviposition to emergence of
the adults, whilst R. loyolaea takes at least 2 years. Eggs of the latter species rarely
hatched at temperatures above about 10 °C and this limitation in egg development is
probably one reason for the restricted distribution of this species to cold streams in the
Alps, Carpathians and Pyrenees (Thomas 1970, 1975; Sowa 1975a, b).

Detailed studies have now been made on the hatching times of twelve species and
twenty populations of Ephemeroptera (Table 5). Hatching of most species usually occurs
within the temperature range 3-21 °C with few eggs hatching outside this range. Notable
exceptions are B. rhodani with large numbers of eggs hatching at temperatures up to
25 °C, R. loyolaea with most eggs hatching in a narrow range of 2-10 °C, and R. semi-
colorata with a lower limit between 4-5 °C (none hatching) and 5-9 °C (4-11% hatching,
see Appendix). Exact temperature limits for hatching are impossible to determine because,
at these limits, the effects of temperature are inextricably confounded with time (Howe
1967). Mean values for the maximum percentage of eggs hatching were over 909 for the
two Baetis spp., Ephemerella ignita, and Tricorythodes minutus, but were always less than
509; for the three Rhithrogena spp. and five Ecdyonurus spp. It was originally suggested
(Humpesch 1980) that the low values for the latter species may be due to the artificial
fertilization of the eggs in the laboratory (values with asterisks in Table 5), but the values
for R. semicolorata in the present study were similar for eggs fertilized naturally (Wilfin
Beck) and artificially (River Lune). Therefore the low hatching success in these eight
species probably occurs in the field and must be taken into account in the interpretation
of their life cycles and population dynamics.

The relationship between hatching time and temperature could not be described by an
equation in four populations, two of which had a diapause in the egg stage (see references
in Table 5). In all other populations, the relationship was well described by a hyperbola
or power-law. Several mathematical models have been used to describe the relationship
between hatching time and temperature in poikilotherms and it is sometimes claimed that
these models have a theoretical basis. As this is not generally agreed, it is probably wiser
to treat all these mathematical relationships as empirical models until there is strong
evidence to the contrary. Popular models are the Van’t Hoff and Arrhenius equations,
both of which require a constant temperature coefficient (Q,, and p respectively) over a
wide range of temperatures. This is frequently not the case and the coefficient remains
constant for only a very restricted part of the temperature range over which development
occurs (references in Bélehrddek 1957; McLaren 1963; Bottrell 1975). Therefore several
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values of the coefficient may have to be calculated to describe one set of data. In spite of
this disadvantage, the coefficient Q;, is still widely used, probably because it is easy to
calculate from sparse data! A third model that has received some support for more
general physiology is Krogh’s ‘normal’ curve (Krogh 1914) which is basically the Van’t
Hoff equation in its exponential form with the addition of a third parameter. This model
has been used for insect development (Nielsen & Evans 1960) and fish metabolism
(Winberg 1956), but other workers have found it inadequate (e.g. Hughes 1970; Bottrell
1975). The equation of Kriiger (1961) is also a three-parameter model that is a modified
Arrhenius equation. This first group of models basically requires an exponential relation-
ship between development rate and temperature (or the reciprocal of absolute tempera-
ture), and if the data do not follow this relationship, then clearly the models are
inadequate.

Models in a second group require an estimate of the maximum rate of development or
its inverse, the time for development at the optimum temperature. This group includes
the ‘catenary’ curve (Janisch 1928; Huffaker 1944; Messenger & Flitters 1958), an
equation by Pradhan (1946) who tried to show that the curve of development rate against
temperature could be derived from the normal probability distribution (see especially the
criticisms of Howe 1967), and the logistic curve which has been used for eggs of terrestrial
insects (Davidson 1944; Birch 1944; Browning 1952) and is strongly advocated by
Andrewartha & Birch (1954). These models are not without their critics (see references in
Nielsen & Evans 1960; McLaren 1963 ; Howe 1967) who have shown that they frequently
do not fit the data, and who have emphasized the problems of trying to estimate the
maximum rate of development or its inverse.

We have tried to fit the models in groups one and two to the data for the eggs of
Ephemeroptera species and have found that these models are inadequate when compared
with a hyperbola or power-law. Both these models belong to a third group of equations
that are summarized in the general equation:

Y=a/(T - 1t) 4

where a, b and ¢ are constants. If ¢ = 0, then the equation is identical to the two-parameter
power-law (eqn (1a)). If b = 1 and ¢ is the threshold temperature, then the equation is
identical to the two-parameter hyperbolic curve (eqn (3) with D = a). Equation (4) is
sometimes attributed to Bélehrddek (1930, 1935) but belongs to a series of power-law
equations that have been used to describe a wide range of relationships in biology and
ecology, e.g. allometric growth (e.g. Simpson, Roe & Lewontin 1960), metabolic relation-
ships with body size (e.g. Kleiber 1961; Elliott 1976) and spatial pattern (e.g. Taylor
Woiwod & Perry 1978).

The relationship between temperature (T °C) and the time taken for 50%; of the eggs
to hatch (Y days) has now been studied in eleven species and sixteen populations of
Ephemeroptera. Values of the constants a, b and ¢ in eqn (4) are summarized in Table 6
with species ranked according to values of the exponent b. Rhithrogena loyolaea was the
only species with a value of b less than one for the power-law, and a hyperbola (b = 1)
was also an adequate model for this species. A hyperbolic curve was the best model for
Ephemerella ignita and the North American species Tricorythodes minutus. The authors
who worked on the latter species appeared to be unaware of this because they fit a power-
law to the data and did not calculate the number of degree-days required for the eggs to
hatch, i.e. 989 degree-days. A power-law was a suitable model for all the remaining
species, and b varied from 1-3 to 2.2 whilst a varied considerably from 548 to 7881.
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Therefore there were considerable differences between species, and also intraspecific
differences for some species (Ecdyonurus picteti, E. venosus) but not for others (Baetis
rhodani, E. dispar, Rhithrogena semicolorata). More general intraspecific differences in
egg development have also been found between populations of Ephemerella ignita in
Germany and England (Bohle 1972; Elliott 1978) and populations of E. dispar from lakes
and rivers (Humpesch 1980). These intraspecific differences may be genuine but there is
also the possibility that this work was on different species that were not recognized
because of taxonomic inadequacies! Although the models summarized in eqn (4) were
found to be adequate for the laboratory experiments (cf. #Z in Table 6), their usefulness
increases considerably if they can be used to predict the time of hatching in the field. This
has now been tested successfully for six species (Table 6), in spite of the problems of
studying hatching of eggs in the field.

Models in a fourth group have been used by some workers and extend the power-law
to a quadratic form:

log Y =loga + blogT + c(log T)? )

where a, b and c are constants. This equation was found to give a better fit than the simpler
power-law for the relationship between temperature and the duration of egg development
in epiphytic Cladocera and Copepoda (Bottrell 1975), and in Gammarus pulex (Nilsson
1977). 1t is possible that eqn (5) would be a slight improvement on the power-law fitted
to the data on eggs of Ephemeroptera. However, polynomials have rarely been helpful
in ecology, chiefly because biological processes are inherently multiplicative, not additive
(Taylor, Woiwod & Perry 1978).

The power-law has been successfully fitted to a wide range of temperature-dependent
rates (see examples in Bélehrddek 1930, 1935, 1957). These include the relationship
between temperature and rate of egg development in several aquatic animals, e.g. twelve
species of frogs in the genus Rana (McLaren 1965a, 1972), two species of fish in the genus
Sardinops (Lasker 1964), several species of copepods (McLaren 1963, 1965b, 1966;
McLaren, Corkett & Zillioux 1969), eight species of amphipods in the genus Gammarus
(Steele & Steele 1973; Welton & Clarke 1980), two species of Plecoptera (Brittain 1977,
1978) and ten species of Ephemeroptera (references in Table 5). Therefore the power-law
appears to be an adequate model for egg development in a wide range of aquatic animals,
but can be used as only an empirical model at present. Bélehradek (1957) has tried to find
a theoretical basis for this model from observations that the relationship between
temperature and viscosity (but not chemical reaction rate) also follows a comparable
log/log relationship. He has suggested that the common feature for all temperature-
dependent physiological rates is the movement of hydrated molecules. Although it is
generally accepted that the relationship between temperature and enzyme reactions is
linear on a logarithmic scale, a considerable amount of biochemical and physiological
work is done at single or uncontrolled temperatures and therefore surprisingly little is
known about the effects of temperature on the biochemical reactions in insect eggs (Howe
1967). Whether or not these reactions will provide a theoretical basis for power-law
relationships, only time will tell.
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